• Title/Summary/Keyword: UV Disinfection

Search Result 127, Processing Time 0.024 seconds

Disinfection Efficiency of Medium Pressure UV Lamp on Major Bacteria in Sand Filtered Water (사여과수에 존재하는 우점세균의 중압 자외선 램프 소독능)

  • Ahn, Seoung-Koo;Yang, Yoon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1141-1146
    • /
    • 2010
  • Isolated the heterotrophic aerobic bacteria in sandfiltered water on NA and TSBA solid medium, selected 8 dominant species and identified by Sherlock System. Each samples are irradiated 0, 5, 16, 40 and $60\;mJ/cm^2$ using on CBD (Collimated Beam Device) Medium Pressure UV lamp after these identified bacterium did liquid culture how to make $10^6{\sim}10^7\;cells/mL$ suspended in dilution water. Then cultured bacteria are estimated inactivation rate on plate media. Identified Gram positive group are Bacillus Subtilus, Bacillus megaterium, Rhodococcus erythropolis and Microbacterium laevaniformans; Gram negative group are Pseudomonas vesicularis, Pseudomonas pseudoflava, Alcaligenes paradoxus and Zooglea ramigera. These isolation of bacterium are more stronger reference strain and high resistance of MP UV irradiation, Besides Gram negative bacterium are more sensitive Gram positive bacterium on MP UV dose. Now we are estimating to $60{\sim}100\;mJ/cm^2$ MP UV dose for efficient disinfection in water treatment plant.

Effect of Particulate Matter on the UV-Disinfection of Virus and Risk Assessment (입자성 물질 농도가 바이러스의 UV-처리와 위해성에 미치는 영향 평가)

  • Shin, Yu-Ri;Yoon, Chun-Gyeong;Rhee, Han-Pil;Lee, Seung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1028-1033
    • /
    • 2010
  • Wastewater reuse for agricultural irrigation needs treatment and control of pathogens to minimize risks to human health and the environment. In order to evaluate the water quality of UV-treated reclaimed water, this study focused on the relationship between micro-pathogens and particulate matters. MS2 was selected as an index organism because it has similar characteristics to human enteric virus and strong resistance to UV disinfection. The turbidity and suspended solid (SS) were selected for test parameters. In this study, it was performed with different UV doses (30 and $60mJ/cm^2$) for estimation of the MS2 inactivation rate using collimated beam batch experiments in the laboratory. The experiment results by turbidity or SS concentration presented that the increased concentration of them lowered MS2 inactivation. At the turbidity (below 4.27 NTU) and SS (below 1.47 mg/L) of the low level range, the inactivation of 60 UV dose is higher than 30 UV dose. However, at the turbidity and SS of the high level, the increasing UV dose did not show apparent increasing the MS2 inactivation. In quantitative microbial risk assessment (QMRA), it can confirm the trend that $P_D$ and turbidity concentrations have positive correlationship at the low concentration, which was also observed in SS. The QMRA can be helpful in communication with public for safe wastewater reuse and be recommended.

SURFICIAL DISINFECTION OF ESCHERIACHIA COLI-CONTAMINATED PLAYGROUND SOIL BY UV IRRADIATION

  • Kim, Jae-Eun;Kim, Tong-Soo;Cho, Shin-Hyeong;Cho, Min;Yoon, Je-Yong;Shea, Patrick J.;Oh, Byung-Taek
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.64-71
    • /
    • 2007
  • The necessity of disinfecting playground soil is an important issue, because pathogenic protozoa, bacteria, and parasite eggs remain viable for several months and can infect children. UV irradiation has been used to decontaminate water but its effectiveness on soil is unclear. We determined the efficacy of UV radiation for inactivation of an indicator bacteria, E. coli (strain ATCC 8739), on playground soil. While 99% inactivation of E. coli in the soil was readily achieved by UV radiation within 55 min at $0.4\;mW\;cm^{-2}$, complete inactivation was not achieved, even after prolonged treatment at $4\;mW\;cm^{-2}$. This was attributed to the irregular surface of the soil. A small number of E. coli escaped the UV radiation because they were situated in indentations or under small particles on the soil surface. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that the surface characteristics of the soil is the major limiting factor in the inactivation of E. coli by UV radiation. Thus UV treatment may not be adequate for disinfecting some soils and should be carefully evaluated before being used on playground soils.

Analysis of Indicator Microorganism Concentration in the Rice Cultural Plot after Reclaimed Water Irrigation (하수처리수 관개후 벼재배 시험구에서 지표미생물 거동 분석)

  • Jung, Kwang-Wook;Jeon, Ji-Hong;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.112-121
    • /
    • 2004
  • A study was performed to examine the effects of UV-disinfected reclaimed water on microorganism concentration during rice culture. Four treatments were used and each one was triplicated to evaluate the changes of microorganism concentrations: stream water irrigation (STR), biofilter effluent irrigation (BE), UV-disinfected water irrigation with dose of 6 mW ${\cdot}$ s $cm{-2}$ (UV-6), and UV-disinfected water irrigation with dose of 16 mW ${\cdot}$ s $cm{-2}$ (UV-16). The indicator microorganisms of interest were total coliform (TC), fecal coliform (FC), and E. coli. The biofilter effluent from 16-unit apartment sewage treatment plant was used as reclaimed water and flowthrough type UV-disinfection system was used. Concentrations of indicator microorganisms in the treatment plots ranged from $10^2$ to $10^5$ MPN/100 mL during 24 hours after irrigation in May and June, where initial irrigation water for transplanting reparation was biofilter-effluent without UV-disinfection. It implies that initial irrigation using only non-disinfected reclaimed water for puddling in paddy field can be health-concerned because of more chance of farmer's physical contact with elevated concentration of microorganisms. The concentrations of microorganisms varied widely with rainfall, and treatments using UV-disinfected water irrigation showed significantly lower concentrations than others and their levels were within the range of paddy rice field with normal surface water irrigation. The mean concentrations of STR and BE during growing season were in the range of 4 ${\times}\;10^3$ MPN/100 mL for TC, and 2${\times}\;10^3$ MPN/100 mL for FC and E, Coli, While mean concentrations of UV-S and UV-lS were less than 1${\times}\;10^3$ MPN/100 mL for all the indicator microorganisms. Overall, UV-disinfection was thought to be feasible and practical alternative for agricultural reuse of secondary level effluent in Korea.

Formation and Treatment Methods of N-Nitrosodimethylamine (NDMA) in Water and Wastewater (상하수에서 N-Nitrosodimethylamine (NDMA) 발생 및 처리법 비교 분석)

  • Kim, Jongo;Lee, Woo-Bum;Park, Soo-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • Overall studies for the N-nitrosodimethylamine (NDMA) formation and treatment methods were conducted. In this study, occurrence in several countries and emerging treatment technologies of NDMA were generally reviewed. The NDMA formation was dependent on pH, contact time, and molar ratio (monochloramine/dimethylamine). The formation was rapidly increased when the molar ratio was greater than 1. It was likely that monochloramine could be related to stimulate NDMA formation. NDMA concentrations in water supply and wastewater plants after disinfection were approximately 10 ng/L and 100 ng/L, respectively. UV oxidation and adsorption processes are regarded as effective technologies for the NDMA removal. It is suggested that the UV oxidation with proper lamps is applied in water supply system.

Simulation for the Flowing Water Purification with Spring Shape Inside Chamber (챔버 내측에 스프링형상을 갖는 유수형 자외선 살균장치 시뮬레이션)

  • Jung, Byung-Gyeon;Jeong, Byeong-Ho;Lee, Jin-Jong;Jung, Byeong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.411-416
    • /
    • 2010
  • Interest in application of ultraviolet light technology for primary disinfection of potable water in drinking water treatment plants has increased significantly in recent years. The efficacy of disinfection processes in water purification systems is governed by several key factors, including reactor hydraulics, disinfectant chemistry, and microbial inactivation kinetics. The objective of this work was to develop a computational fluid dynamics(CFD) model to predict velocity fields, mass transport, chlorine decay, and microbial inactivation in a continuous flow reactor. In this paper, It describe the how to design optimal UV disinfection device for ground water, BWT and rainwater. Spring shape instrument silver coated located in inner side of disinfection chamber. It make lead the active flowing movement target water and maximize disinfection performance. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method, performed simulation and proved satisfied performance.

Applicability Investigation of E.coli, RNA and DNA Bacteriophages for Possible Indicator Microorganisms Based on the Inactivation Effectiveness by UV (UV 불활성화 효과에 의거한 E.coli, RNA 및 DNA 박테리오파지의 대체 지표 미생물로서의 적용성 검토)

  • Kim, Il-Ho;Wahid, Marfiah AB;Tanaka, Hiroaki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1063-1068
    • /
    • 2010
  • This study compared UV and UV/$H_2O_2$ inactivation of E.coli, a possible indicator microorganism for fecal contamination of water, and $Q{\ss}$ phage, an indicator for pathogenic viruses. UV inactivation of $Q{\ss}$, T4 and lambda phages in actual secondary effluent was investigated, too. As a result, similar inactivation efficiency between $Q{\ss}$ phage and E.coli was observed during UV treatment, while $Q{\ss}$ phage showed higher resistance to UV/$H_2O_2$ than E.coli. $Q{\ss}$ phage resistance to UV or UV/$H_2O_2$ does not reflect those of all pathogenic viruses. However, the result tells that the use of E.coli inactivation efficiency in evaluating microbiological safety of water could not always ensure the sufficient safety from pathogenic viruses. Meanwhile, $Q{\ss}$ phage showed less resistance to UV than T4 and lambda phages, indicating that the use of $Q{\ss}$ phage as an indicator virus may bring insufficient disinfection effectiveness by causing the introduction of lower UV dose than required. Consequently, it can be thought that T4 or lambda phages would be more desirable indicators in ensuring the sufficient disinfection effectiveness for various pathogenic viruses.

Effectiveness of Photocatalytic Techniques for Disinfection of Indoor Bioaerosols (실내 미생물 입자 살균을 위한 광촉매 기술의 효율)

  • Shin, Seoung-Ho;Kim, Mo-Geun;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.785-791
    • /
    • 2007
  • The current study evaluated the technical feasibility of the application of titanium dioxide ($TiO_{2}$) photo-catalytic air cleaners for the disinfection of bioaerosols present in indoor air. The evaluation included both laboratory and field tests and the tests of hydraulic diameter (HD) and lamp type (LT). Disinfection efficiency of photocatalytic oxidation (PCO) technique was estimated by survival ratio of bacteria or fungi calculated from the number of viable cells which form colonies on the nutrient agar plates. It was suggested that the reactor coating with $TiO_{2}$ did not enhance the adsorption of bioaerosols, and that the UV irradiation has certain extent of disinfection efficiency. The disinfection efficiency increased as HD decreased, most likely due to the decrease in the light intensity since the distance of the catalyst from the light source increased when increasing the HD. It was further suggested that the mass transfer effects were not as important as the light intensity effects on the PCO disinfection efficiency of bioaerosols. Germicidal lamp was superior to the black lamp for the disinfection of airborne bacteria and fungi, which is supported by the finding that the disinfection efficiencies were higher when the germicidal lamp was used compared to the black lamp in the laboratory test. These findings, combined with operational attributes such as a low pressure drop across the reactor and ambient temperature operation, can make the PCO reactor a possible tool in the effort to improve indoor bioaerosol levels.

A Study of Treatment Efficiency of Reflectors for CSOs Disinfection by Pulsed UV (Pulsed UV를 이용한 CSOs 소독시 반사체에 따른 처리효율 연구)

  • Han, Jonghun;Hur, Jiyong;Kim, Kangwook;Lee, Junyoung;Park, Wonseok;Lee, Jongyeol;Her, Namguk
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.36-40
    • /
    • 2015
  • This study examined the disinfection in combined sewer overflows (CSOs) by pulsed ultraviolet (PUV). The reflectors (stainless steel. mirror, aluminium foil, aluminium (1050), aluminium (6061), aluminium (5052), and aluminium mirror) of PUV irradiation was performed in a 90 L stainless reactor at a constant temperature of $20^{\circ}C$ and an applied power of 4000 W. The reflection efficiency of reflectors were showed 1.00 (aluminium mirror) ~ 1.48 (aluminium foil) does. The case of a rough surface analysis using SEM showed high reflectance, was the case of a smooth surface and a low reflectivity. Pseudo first-order rate constant calculated results, has a higher reflectivity values were more than twice as high compared to the low reflectivity. Affected Total coliforms disinfection time, depending on the type of reflector is considered.