• Title/Summary/Keyword: UV/ozone oxidation

Search Result 66, Processing Time 0.028 seconds

A Study on the Dye Wastewater Treatment by Advanced Oxidation Process (고급산화공정을 이용한 염료폐수의 처리기술 연구)

  • Kang, Tae Hee;Oh, Byung Soo;Park, Sei Joon;Kang, Min Gu;Kim, Jong Sung;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.267-273
    • /
    • 2005
  • Dye wastewater generally contains strong color and non-biodegradable materials. Therefore, the conventional wastewater treatment plant can hardly meet the regulation of wastewater effluent water. In this study, a pilot plant of the conventional process followed by advanced oxidation process (AOP), was set up to treat the dying wastewater. The treatment efficiencies on the various candidate processes, such as ozone alone, UV alone, ozone/UV, $ozone/H_2O_2$, $H_2O_2/UV$ and $ozone/UV/H_2O_2$, were investigated in the various ozone and $H_2O_2$ doses. As the results, the $ozone/H_2O_2$ process, among the tested processes, showed the highest efficiency for removing color and $COD_{Cr}$. For color removal, the ozone alone process was enough without combining UV or $H_2O_2$. No significantly enhanced efficiency for removing color and $COD_{Cr}$ by UV irradiation was observed because of the very low transmittance of UV light in dye wastewater.

Treatment of Aniline-contaminated Wastewater using Oxidation Reagent (산화제를 이용한 아닐린 폐수처리)

  • 김광렬;신진환
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.51-57
    • /
    • 1997
  • This work carried out the removal of aniline by wet oxidation in aqueous solutions like a industrial wastewater using Ozone, UV, and Ozone-UV . The main features of this experiment are as follows: the aniline was decomposed by OH and HO$_{2}$ radicals which produced from the reaction of water with UV and Ozone, when the Ozorie and Ozone-UV used the aniline was decomposed completely. The decomposition of aniline was very fast reaction and the reaction times were within 10min. and 20min. in case of for Ozone Ozone-UV respectively. Assumed simplified reaction mechanism from the aniline oxidation model, and the we are calculated the theoretical reaction rate constants by computer simulation, and then compared with experimental data. We suggest that this simulation program is applicable to estimate of the aniline decaying concentration and removal efficiency of aniline - contaminated wastewater.

  • PDF

Comparison of Acetaminophen Degradation Performance using Advanced Oxidation Process (고급산화공정을 이용한 아세트아미노펜 분해 성능 비교)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.319-328
    • /
    • 2022
  • This study investigated the treatment of acetaminophen in municipal wastewater by conventional ozonation, ozone-based advanced oxidation, ozone/UV, and the electro-peroxone process. The ozone/UV process and electro-peroxone process of electric power consumption increased 1.25 and 2.04 times, respectively, compared to the ozone process. The pseudo-steady OH radical concentration was the greatest in the electro-peroxone process and lowest in the ozone process. The specific energy consumption for TOC decomposition of the ozone/UV process and electro-peroxone process were 22.8% and 15.5% of the ozone process, respectively. Results suggest that it is advantageous in terms of degradation performance and energy consumption to use a combination of processes in municipal wastewater treatment, rather than an ozone process alone. In combination with the ozone process, the electrolysis process was found to be more advantageous than the UV process.

Decomposition of Humic Acid and Reduction of THM Formation Potential by Ozone and Combined Ozone/Ultraviolet Oxidation (오존 및 오존/UV 산화법을 이용한 휴믹산의 분해와 THM 발생능의 감소)

  • Park, Ju-Seok;Park, Tae-Jin;Kwon, Bong-Kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.55-63
    • /
    • 1996
  • This research was based on comparing ozonation with combined ozone/ultraviolet oxidation through the methods of reducing THM produced during water treatment. The results were as follows ; 1. The decline of THM concentration was appeared according as ozone dosage increases with ozonation and combined ozone/ultraviolet oxidation. The more effective method was the treatment of irradiating UV then ozonation. In the beginning of reaction the decline rate of THM formation potential was low, I thought it was because that the reaction of ozone and humic acid needed times to be steady state, or that THM formation potential existed according to humic acid. 2. The effect of combined ozone/ultraviolet oxidation when ozone dosage was 4.2mg/L min was almost the same that of ozonation when ozone dosage was 8.6mg/L min. 3. In experiment of TOC decline through ozonation and combined ozone/ultraviolet oxidation, TOC concentration was also dropped according to increasing ozone dosage and the more effective results were showed in treatment of irradiating UV than ozonation. But the similar TOC remove rates were showed in experiment of changing with ozone dosage during combined ozone/ultraviolet oxidation TOC remove rates were low in proportion to the remove rates of THM formation potential, it was considered that humic acid was made low molecule itself though ozonation and ozone/ultraviolet oxidation. Moreover, the high degree of remove efficiency will be get though the treatment of activated carbon of GAC treatment after combined ozone/ultravilet oxidation.

  • PDF

Evaluation Method for Graphene Grain Boundary by UV/ozone-oxidation Chemical-etching Process (UV/ozone 산화처리 및 화학적 식각공정을 적용한 그래핀 Grain Boundary 평가 방법)

  • Kang, Jaewoon;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Chemical vapor deposited (CVD) polycrystalline graphene is widely used for various sensor application because of its extremely large surface-to-volume ratio. The electrical properties of CVD-graphene is significantly affected by the grain size and boundaries (GGBs), but evaluation of GGB of continuous monolayer graphene is difficult. Although several evaluation methods such as tunneling electron microscopy, confocal Raman, UV/ozone-oxidation are typically used, they still have issues in evaluation efficiency and accuracy. In this paper, we suggest an improved evaluation method for precise and simple GGB evaluation which is based on UV/ozone-oxidation and chemical etching process. Using this method, we could observe clear GGBs of CVD-graphene layers grown by different process conditions and statistically evaluate average grain sizes varying from $1.69{\sim}4.43{\mu}m$. This evaluation method can be used for analyzing the correlation between the electrical properties and grain size of CVD-graphene, which is essential for the development of graphene-based sensor devices.

A Comparative Study on Degradation of BTEX Vapor by O3/UV, TiO2/UV, and O3/TiO2/UV System with Operating Conditions (운전조건에 따른 O3/UV, TiO2/UV 및 O3/TiO2/UV 시스템의 BTEX 증기처리에 관한 비교 연구)

  • Kim, Kyoung-Jin;Park, Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • A multilayer tower-type photoreactor, in which $TiO_2$-coated glass-tubes were installed, was used to measure the vapor-phase BTEX removal efficiencies by ozone oxidation ($O_3$/UV), photocatalytic oxidation ($TiO_2$/UV) and the combination of ozone and photocatalytic oxidation ($O_3/TiO_2$/UV) process, respectively. The experiments were conducted under various relative humidities, temperatures, ozone concentrations, gas flow rates and BTEX concentrations. As a result, the BTEX removal efficiency and the oxidation rate by $O_3/TiO_2$/UV system were highest, compared to $O_3$/UV and $TiO_2$/UV system. The $O_3/TiO_2$/UV system accelerated the low oxidation rate of low-concentration organic compounds and removed organic compounds to a large extent in a fixed volume of reactor in a short time. Therefore, $O_3/TiO_2$/UV system as a superimposed oxidation technology was developed to efficiently and economically treat refractory VOCs. Also, this study demonstrated feasibility of a technology to scale up a photoreactor from lab-scale to pilot-scale, which uses (i) a separated light-source chamber and a light distribution system, (ii) catalyst fixing to glass-tube media, and (iii) unit connection in series and/or parallel. The experimental results from $O_3/TiO_2$/UV system showed that (i) the highest BTEX removal efficiencies were obtained under relative humidity ranging from 50 to 55% and temperature ranging from 40 to $50^{\circ}C$, and (ii) the removal efficiencies linearly increased with ozone dosage and decreased with gas flow rate. When applying Langmuir-Hinshelwood model to $TiO_2$/UV and $O_3/TiO_2$/UV system, reaction rate constant for $O_3/TiO_2$/UV system was larger than that for $TiO_2$/UV system, however, it was found that adsorption constant for $O_3/TiO_2$/UV system was smaller than that for $TiO_2$/UV system due to competitive adsorption between organics and ozone.

A Study on Ozone Oxidation of Algae (조류의 오존산화에 관한 연구)

  • 김은호;성낙창;최용락
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.590-595
    • /
    • 1999
  • The objectives of this research were to estimate variation characteristics of TOC, UV-254 and NH4+-N, etc, if odorous generated algaes flowed into water treatment plant and they contacted with ozone known as typical advanced treatment. It was estimated that pH decreased from initial 7.4 to 2.1 after ozone contact 100min. pH declined to early 10min. suddenly and then pH drop did almost occur. TOC and UV-254 continued to decrease with passed time of ozone contact. NO3--N concentration was much higher than NH4+-N and NO2--N for whole test period. Because ozone oxidized organic matters as various kinds of ion material and ion intensity of sample was extended, conductivity showed high as passed time of ozone contact. Owing to ozone oxidation of algae, color did almost disappear after ozone contact 20min.

  • PDF

Removal of COD and Color from Anaerobic Digestion Effluent of Livestock Wastewater by Advanced Oxidation Using Microbubbled Ozone (마이크로버블 오존 고도산화를 이용한 축산폐수 혐기소화 배출수의 COD와 색도의 제거)

  • Lee, Inkyu;Lee, Eunyoung;Lee, Hyejung;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.617-622
    • /
    • 2011
  • Ozone-based advanced oxidation was applied for the treatment of anaerobic digestion effluent of livestock wastewater. Initial COD and color value were 930 mg/L and 0.04, respectively, and the 1/10-diluted wastewater was used for the study. The treatment characteristics were compared between the conventionally generated ozone ($105{\mu}m$) and microbubbled ozone ($13{\mu}m$). The use of microbubbled ozone improved the removal of chemical oxygen demand (COD) and color by 85% and 26%, respectively, compared with the conventionally bubbled ozone. The application of microbubbled $O_3/UV$, $O_3/H_2O_2$, $O_3/UV/H_2O_2$ combinations resulted in 5~10% higher color removal than ozone alone, which implies that the contribution of UV or $H_2O_2$ is not significant in color removal. On the other hand, COD removal could be increased two folds compared with ozone alone through $O_3/UV/H_2O_2$ combination. The contribution of $H_2O_2$ was bigger than UV for COD removal with microbubbled ozone. Due to the enhancement of dissolved ozone and radical activity, the microbubbling enabled us to additional COD removal even after stopping ozone supply in the presence of UV or $H_2O_2$.

A Study on Ozonation of 4-nonylphenol (4-nonylphenol의 오존산화 처리반응에 관한 연구)

  • Lee, Cheal-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.736-743
    • /
    • 2017
  • In this study, 4-nonylphenol (4-NP), an endocrine disrupting chemical, was removed by ozone treatment processes under the various experimental conditions including UV irradiation, $TiO_2$ addition. The ozone flow rate and concentration were maintained at $1.0L{\cdot}min^{-1}$ and $70{\pm}5mg{\cdot}L^{-1}$. The pH, COD and TOC of the samples were obtained every 10 minutes for 60 minutes in laboratory scale batch reactor. We found that the combination of UV irradiation and $TiO_2$ addition for ozonation improves the removal efficiency of COD and TOC in 4-NP aqueous solution. In case of the $O_3/UV/TiO_2$ system, COD and TOC were greatly reduced to 85.3 ~ 94.0% and 89.2 ~ 97.2%, respectively. 4-NP degradation rate constants, $k_{COD}$ and $k_{TOC}$, were calculated based on the COD and TOC values. Significantly, $k_{COD}$ and $k_{TOC}$ were improved in the $O_3/UV/TiO_2$ treatment process compared with single $O_3$ process, because the oxidation and the mineralization of 4-NP were increased by generating of the hydroxyl radical. The $k_{COD}$ and $k_{TOC}$ were obtained to be $5.81{\times}10^{-4}{\sim}10.8{\times}10^{-4}sec^{-1}$ and $11.9{\times}10^{-4}{\sim}19.4{\times}10^{-4}sec^{-1}$ in the $O_3/UV/TiO_2$ process. Activation energy ($E_a$) of ozone oxidation reaction based on $k_{COD}$ and $k_{TOC}$ were increased in order of $O_3/UV/TiO_2$ < $O3/UV$ < $O_3/TiO_2$ < $O_3$ process. It was confirmed that the addition of $TiO_2$ and UV irradiation to the ozone oxidation reaction significantly reduced the $E_a$ value and the degradation of 4-NP.

Photodegradation of Gaseous Toluene Using Short-Wavelength UV/TiO2 and Treatment of Decomposition Products by Wet Scrubber (단파장자외선/TiO2 공정에 의한 가스상 톨루엔의 분해 및 습식세정장치에 의한 분해생성물의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.433-440
    • /
    • 2007
  • The photodegradation and by-products of the gaseous toluene with $TiO_2$ (P25) and short-wavelength UV ($UV_{254+185nm}$) radiation were studied. The toluene was decomposed and mineralized efficiently owed to the synergistic effect of photochemical oxidation in the gas phase and photocatalytic oxidation on the $TiO_2$ surface. The toluene by the $UV_{254+185nm}$ photoirradiated $TiO_2$ were mainly mineralized $CO_2$ and CO, but some water-soluble organic intermediates were also formed under severe reaction conditions. The ozone and secondary organic aerosol were produced as undesirable by-products. It was found that wet scrubber was useful as post-treatment to remove water-soluble organic intermediates. Excess ozone could be easily removed by means of a $MnO_2$ ozone-decomposition catalyst. It was also observed that the $MnO_2$ catalyst could decompose organic compounds by using oxygen reactive species formed in process of ozone decomposition.