• Title/Summary/Keyword: UTS

Search Result 134, Processing Time 0.019 seconds

Convergence study of mechanical properties and biocompatability of Ti Gr4 surface coated with HA using plasma spray for ossoeintegration (골융합 촉진을 위한 Ti Gr4의 HA 코팅에 대한 물리적 특성과 생체안정성에 대한 융합적 연구)

  • Hwang, Gab-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.145-151
    • /
    • 2021
  • This study aimed to investigate the efficient conduct of HA coating on Ti Gr4 for the practical use of medical device. Ti Gr4 alloy specimens measuring 𝜱 25mm × 1mm were sprayed with hydroxyapatite using thermal spray according to ASTM F1185-88. The surface was evaluated at #120, #400, #1,000 sandpaper and barrel finishing. Each coating properties was analyzed using SEM, UTS 20,000psi cap. and in vitro cytotoxicity. Surface morphology consists of well molten particles with very little resolidified or unmolten areas. The average Ca/P ratio is 1.74 which is in good agreement with theoretical value of 1.67. The average roughness Ra is very representative of roughness of specimen. The coatings are dense and well adhered to the substrate. The average bond strength was 61.74 MPa with a standard deviation of 4.06 which indicates fairly reliable results for ASTM 633 type tests. Variations in results from jig design, epoxy used, crosshead speeds etc. in vitro cytotoxicity result had a Grade 3. The results of the study are expected to be helpful in osseointegration and plasma-spray HA coated Ti Gr4 are more satisfactory in HA coating thickness elevation which is preferable to any other system.

Effects of Damage Evolution of Eutectic Si Particle and Microporosity to Tensile Property of Al-xSi Alloys (Al-xSi 합금의 인장특성에 미치는 공정 Si 입자의 파단과 미소기공율의 영향)

  • Lee, ChoongDo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.434-444
    • /
    • 2021
  • This study investigated the overall dependence of the tensile properties of Al-Si alloys on the distribution aspect of a eutectic Si particle in terms of defect susceptibility to the effective void area fraction, referring to the sum of pre-existing microvoids and the damage evolution of the Si particle. The network morphology of as-cast Al-xSi (x=2,5,8,11) alloys was modified to a granular type via a T4 treatment, after which a computational topography (CT) analysis and scanning electron microscope (SEM) observations were utilized to evaluate the size and distribution of the microvoids. The CT and SEM analyses indicated that the main cracks grow along local regions that possess the highest porosity level. The local plastic deformation around the microvoids and the distribution aspect of the microvoids induced a practical difference between the iso-volumetric CT measurement and the SEM fractography outcomes. The results demonstrated that the overall dependence of the ultimate tensile strength (UTS) and elongation on the effective void area fraction is more sensitive to the variation of the area fraction of the Si particle in the network morphology than in the granular type; this is due to the sequential damage evolution of the neighboring Si particles in the eutectic Si colony.

Effects of the Solid Solution Treatment Conditions and Casting Methods on Mechanical Properties of Al-Si-Cu Based Alloys (Al-Si-Cu계 합금의 주조법과 용체화처리 조건이 기계적 특성변화에 미치는 영향)

  • Moon, Min-Kook;Kim, Young-Chan;Kim, Yu-Mi;Choi, Se-Weon;Kang, Chang-Seog;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.111-120
    • /
    • 2018
  • In this study, the effects of two different casting methods (gravity casting and, diecasting) and various solid-solution conditions on the mechanical properties of ASC (Al-10.5wt%Si-1.75wt%Cu) and ALDC12 (Al-10.3wt%Si-1.72wt%Cu-0.76wt%Fe-0.28wt% Mn-0.32wt%Mg-0.9wt%Zn) alloys were investigated. A thermodynamic solidification analysis program (PANDAT) was used to predict the liquidus, solidus, and phases of the used alloys. In the results of an XRD analysis, ${\beta}$-AlFeSi peaks were observed only in the ALDC12 alloy regardless of the casting method or SST (solid-solution treatment) conditions. However, according to the results of a FE-SEM observation, both ${\theta}(Al_2Cu)$ and ${\beta}$-AlFeSi were found to exist besides ${\alpha}$-Al and eutectic Si in the gravity-casted ASC alloy at $500^{\circ}C$ after a SST of 120min. The ${\alpha}$-AlFeSi and ${\beta}$-AlFeSi phases including the eutectic phases were also found to exist in the ALDC12 alloy. The results of a microstructural observation and analyses by XRD, FE-SEM and EDS were in good agreement with the PANDAT results. The gravity-casted ALDC12 and ASC specimens showed the highest Y.S. and UTS values after aging for three hours at $180^{\circ}C$ after a SST at $500^{\circ}C$ for 30min. At longer solid-solution treatment times at $500^{\circ}C$ in the gravity-casted ALDC12 and ASC specimens, the elongations of the ASC alloys increased, whereas they decreased slightly in the ALDC12 alloys.

The Slow Strain Rate Dependence of Zircaloy-4 Cladding Tube in Iodine Atmosphere (I) (요드분위기에서 지르칼로이 피복재의 저변형율속도 의존성(I))

  • Choi, Y.;Kang, Y.H.;Ryu, W.S.;Rim, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.211-215
    • /
    • 1985
  • The effects of temperature and strain rate on the I-SCC behaviors of Zircaloy-4 were investigated by constant load test at 30$0^{\circ}C$ and constant elongation rate test at 300, 350 and 40$0^{\circ}C$ in 3.34mg $I_2$/㎤. The results showed that I-SCC susceptibility increased as the strain rate decreased or the temperature increased. The empirical relation between the stress and the time to failure at 30$0^{\circ}C$ was given by 1/ $t_{f}$∝exp (0.3$\sigma$/$\sigma$$_{UTS}$-31.5) When the I-SCC susceptibility was expressed by the ratio of fracture energy in iodine atmosphere to that in the inert atmosphere, severe I-SCC susceptibility was found near 7.6$\times$10$^{-6}$ sec at 30$0^{\circ}C$ and the maximum point of I-SCC susceptibility tended to shift to the higher strain rate with increasing the temperature. The quasi-cleavage fracture was observed in I-SCC fracture surface. From these results, it was certain that the film repture step was involved as an important process in the I-SCC mechanism of Zircaloy-4.4.

  • PDF