• Title/Summary/Keyword: URVs

Search Result 5, Processing Time 0.015 seconds

A Neural Network Adaptive Controller for Autonomous Diving Control of an Autonomous Underwater Vehicle

  • Li, Ji-Hong;Lee, Pan-Mook;Jun, Bong-Huan
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.374-383
    • /
    • 2004
  • This paper presents a neural network adaptive controller for autonomous diving control of an autonomous underwater vehicle (AUV) using adaptive backstepping method. In general, the dynamics of underwater robotics vehicles (URVs) are highly nonlinear and the hydrodynamic coefficients of vehicles are difficult to be accurately determined a priori because of variations of these coefficients with different operating conditions. In this paper, the smooth unknown dynamics of a vehicle is approximated by a neural network, and the remaining unstructured uncertainties, such as disturbances and unmodeled dynamics, are assumed to be unbounded, although they still satisfy certain growth conditions characterized by 'bounding functions' composed of known functions multiplied by unknown constants. Under certain relaxed assumptions pertaining to the control gain functions, the proposed control scheme can guarantee that all the signals in the closed-loop system satisfy to be uniformly ultimately bounded (UUB). Simulation studies are included to illustrate the effectiveness of the proposed control scheme, and some practical features of the control laws are also discussed.

Design, Implementation and Test of New System Software Architecture for Autonomous Underwater Robotic Vehicle, ODIN-III (시험용 자율 무인 잠수정, ODIN-III의 새로운 시스템 소프트웨어 구조의 설계와 구현 및 실험)

  • 최현택;김진현;여준구;김홍록;서일홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.442-449
    • /
    • 2004
  • As underwater robotic vehicles (URVs) become attractive for more sophisticated underwater tasks, the demand of high performance in terms of accuracy and dexterity has been increased. An autonomous underwater robotic vehicle, ODIN (Omni-Directional Intelligent Navigator) was designed and built at the Autonomous Systems Laboratory of the University of Hawaii in 1991. Since 1991, various studies were conducted on ODIN and have contributed to the advancement in underwater robotics. Its refurbished model ODIN II was based on VxWorks in VMEbus. Recently, ODIN was born again as a PC based system, ODIN III with unique features such as new vehicle system software architecture with an objective-oriented concept, a graphical user interface, and an independent and modular structure using a Dynamic Linking Library (DLL) based on the Windows operating system. ODIN III software architecture offers an ideal environment where various studies for advanced URV technology can be conducted. This paper describes software architecture of ODIN III and presents initial experimental results of fine motion control on ODIN III.

A TSK Fuzzy Controller for Underwater Robots

  • Kim, Su-Jin;Oh, Kab-Suk;Lee, Won-Chang;Kang, Geun-Taek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.320-325
    • /
    • 1998
  • Underwater robotic vehicles (URVs) have been an important tool for various underwater tasks because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system becomes one of the most critical subsytems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. In this paper a new type of fuzzy model-based controller based on Takagi-Sugeno-Kang fuzzy model is designed and applied to the control of of an underwater robotic vehicle. The proposed fuzzy controller : 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule ; 2) can guarantee the stability of the closed-loop fuzzy system ; 3) is relatively easy to implement. Its good performance as well as its robustness to the change of parameters have been shown and compared with the re ults of conventional linear controller by simulation.

  • PDF

Fuzzy Control of Underwater Robotic Vehicles (무인 잠수정의 퍼지제어)

  • Lee, W.;Kang, G.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.47-54
    • /
    • 1998
  • Underwater robotic vehicles(URVs) have been an important tool for various underwater tasks such as pipe-lining, data collection, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system is one of the most critical subsystems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. It is desirable to have an intelligent vehicle control system because the fixed-parameter linear controller such as PID may not be able to handle these changes promptly and result in poor performance. In this paper we described and analyzed a new type of fuzzy model-based controller which is designed for underwater robotic vehicles and based on Takagi-Sugeno-Kang(TSK) fuzzy model. The proposed fuzzy controller: 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule; 2) can guarantee the stability of the closed-loop fuzzy system; 3) is relatively easy to implement. Its good performance as well as its robustness to parameter changes will be shown and compared with those of the PID controller by simulation.

  • PDF

An Adaptive Learning Controller for Underwater Vehicle with Thruster Dynamics (추진기의 영향을 고려한 무인잠수정의 적응학습제어)

  • 이원창
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.290-297
    • /
    • 1997
  • Underwater robotic vehicles(URVs) are used for various work assignments such as pipe-lining, inspection, data collection, drill support, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc. As the use of such vehicles increases the development of vehicles having greater autonomy becomes highly desirable. The vehicle control system is one of the most critic vehicle subsystems to increase autonomy of the vehicle. The vehicle dynamics is nonlinear and time-varying. Hydrodynamic coefficients are often difficult to accurately estimate. It was also observed by experiments that the effect of electrically powered thruster dynamics on the vehicle become significant at low speed or stationkeeping. The conventional linear controller with fixed gains based on the simplified vehicle dynamics, such as PID, may not be able to handle these properties and result in poor performance. Therefore, it is desirable to have a control system with the capability of learning and adapting to the changes in the vehicle dynamics and operating parameters and providing desired performance. This paper presents an adaptive and learning control system which estimates a new set of parameters defined as combinations of unknown bounded constants of system parameter matrices, rather than system parameters. The control system is described with the proof of stability and the effect of unmodeled thruster dynamics on a single thruster vehicle system is also investigated.

  • PDF