• Title/Summary/Keyword: UPS Inverter

Search Result 146, Processing Time 0.023 seconds

The Characteristic Improvement of Inverter Output for Static UPS (UPS용 인버터 출력특성 개선)

  • Kim, D.U.;Kim, Y.P.;Shin, H.J.;Baek, B.S.;Ryu, S.P.;Min, B.G.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2051-2053
    • /
    • 1998
  • In spite of nonlinear or step-changing load and line disturbances, the inverter for the UPS must provide the pure sinusoidal output voltage with low THD(Total Harmonics Distortion). This paper proposes an inverter controller for the UPS which has a good dynamic response characteristic and robustness for applying industrial world directly. The inverter output voltage is controlled instantaneously with a double regulation loop by a TMS320C31 Digital Signal Processor so that it has very good dynamic response for nonlinear or step-changing load and line disturbances. To improve the voltage utilization and response characteristics, the Space Vector Modulation(SVM) technique is adapted for the switching method of this system. The characteristics of the proposed control system were verified by simulations and experiments.

  • PDF

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.

Design of Robust Controller of Inverter for Single UPS (단상 UPS용 인버터의 강인제어기 설계)

  • 김제홍;김재식
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, a robust controller for UPS inverter is designed using CDM (Coefficient Diagram Method) developed by S. Manabe, by which a low order controller guaranteeing the stability and robustness is easily designed. The proposed controller consists of two control loops, the inner current control loop and the outer voltage control loop. The robustness of the proposed controller is verified through the theoretic evolution and its simulation.

  • PDF

Three-phase Voltage Source Inverter for UPS using Space Vector Modulation (공간벡터 변조기법을 이용한 UPS용 삼상 전압형 인버터)

  • Lee, S.H.;Kim, B.J.;Choi, J.H.;Ahn, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.543-545
    • /
    • 1996
  • In this paper, a voltage and current control scheme of a three-phase voltage source inverter for UPS is described. The inverter provides pure sinusoidal output voltage with very low THD(Total Harmonic Distortion). The proposed controller is designed to robust against the load change, parameter variations, and disturbances using PI controller. The switching pattern is determined to Space Vector Modulation. Finally, the performance of the proposed inverter is shown and discussed by simulation.

  • PDF

A Wireless Parallel Operation of Single-phase UPS Inverter using Single-loop Robust Voltage Controller (단일 루프 강인 전압 제어기를 이용한 단상 UPS 인버터의 비통신선 방식 병렬 운전)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Gueesoo
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.203-204
    • /
    • 2011
  • 단일 루프 강인 전압 제어기를 이용한 단상 3kVA UPS 인버터의 비통신선 방식 병렬 운전 결과를 기술한다. 단상 UPS 인버터 2대로 병렬운전 실험 환경을 구축하였고, 주파수-전압 강하 방식의 수하 제어를 이용하여 저항 부하, 비선형 부하에 대한 전력분담을 실험을 통하여 확인하였다.

  • PDF

Designing for the Off-line UPS using SMB Flywheel Energy Storage System (초고속 플라이휠 에너지 저장시스템을 이용한 Off-line UPS 제작)

  • 최재호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.689-692
    • /
    • 2000
  • This paper presents a designing for the Off-line UPS usig SMB Flywheel Energy Storage System. This described flywheel energy storage system is designed to replace of the conventional EMB(Electro Mechanical Battery) system. To realize the high efficiency and to minimize the torque ripple the waveform of the inverter output current is controlled to be sinusoidal. The actual performance of the Off-line UPS using flywheel energy storage system is described. The prototype device was manufactured, The experimental result has good characteristics at a time of power transition region and regeneration modes,

  • PDF

A Cost-Effective, Single-Phase Line-Interactive UPS System that Eliminates Inrush Current Phenomenon for Transformer-Coupled Loads

  • Bukhari, Syed Sabir Hussain;Atiq, Shahid;Lipo, Thomas A.;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.675-682
    • /
    • 2016
  • Sudden voltage drops and outages frequently disturb the operation of sensitive loads for domestic, commercial, and industrial use. In some cases, these events may even impair the functioning of relevant equipment. To maintain power under such conditions, a UPS system is usually installed. Once a disturbance happens at the grid side, the line-interactive UPS system takes over the load to prevent an interruption. But, due to magnetic saturation of the transformer, a significant inrush current may occur for the transformer-coupled loads during this transition. The generation of such transient currents may in turn decrease the line voltage and activates over-current protecting devices of the system. In this work, a cost-effective, line-interactive UPS system is proposed that eliminates the inrush current phenomenon associated with transformer-coupled loads. The strategy was implemented by connecting a standard current-regulated voltage source inverter (CRVSI) to the secondary winding of the load transformer. During any transient condition at the grid side, the load current is monitored and regulated to achieve either seamless compensation of the load current or complete transferal of load from grid to the inverter. Experimental results were obtained for a prototype under all possible operating conditions so as to validate the performance of the proposed topology.

Wireless Parallel Operation Control of N+l Redundant UPS System (독립제어구조를 갖는 N+1 모듈형 UPS 시스템의 병렬운전)

  • 조준석;한재원;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.499-508
    • /
    • 2002
  • In this paper, a novel wireless parallel operation algorithm of N+l redundant UPS system with no control interconnections for load-sharing is presented. The proposed control system eliminates the sensing noise and interconnections interference of conventional parallel operation system. To reduce a reactive power deviation in wireless control method, this technique automatically compensates for inverter parameter variation and line impedance imbalances with wireless auto-tuning method. In addition, to increase reliability on transient characteristics of parallel operation, a virtual injected impedance is adopted to eliminate a circulation current among inverter modules. Simulation results are provided in this paper to prove the proposed novel wireless algorithm.

Digital Control of UPS Inverter with Time Response Specifications

  • Woo Young-Tae;Kim Jae-Sik;Kim Young-Chol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.196-203
    • /
    • 2005
  • In this paper, a digital controller for satisfying time response requirements for UPS inverters is designed in a fixed sampling time. The CRA (Characteristic Ratio Assignment) is used as the continuous time design method to deal with the problems of overshoot and settling time. The main design approaches are the inward and outward approaches based on a double-loop feedback structure. The continuous-time controller is discretized by the emulation method. The performances of the proposed controller are evaluated through several simulations carried out with Simpower System Toolbox 3.0 from Simulink$^{(R)}.

Practical Series-Parallel Compensated Uninterruptible Power Supply (실용적인 직병렬 구조의 무정전전원장치)

  • Jeon, Seong-Jeup;Choe, Gyu-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.322-329
    • /
    • 1999
  • In this paper a practical series-parallel compensated UPS is suggested, which has high input power factor and sinusoidal output voltage regulation capability. Compared to conventional cascaded UPS, the size can be reduced significantly with high quality input and output waveforms. The front converter and the main inverter can be considered decoupled, hence the front converter and the main inverter can be designed independent of each other. In this paper, analysis and experimental results for an l KVA prototype are presented.

  • PDF