• Title/Summary/Keyword: UPFC

Search Result 158, Processing Time 0.022 seconds

Improvement of the Differential Current Relaying Method for Protecting the Transmission Line Equipped with UPFC (UPFC를 포함한 송전성에서의 전류차동 보호 방식의 개선)

  • Lim, Jung-Uk;Kwon, Young-Jin;Runolfsson, Thordur
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.40-47
    • /
    • 2005
  • The objective of this paper is to analyze power system dynamics influenced by UPFC(Unified Power flow Controller) operation and to develop a refined DCRM(Differential Current Relaying Method) to protect the transmission line with UPFC effectively. The implementation of control strategies for UPFC introduces new power system dynamic problems that must be considered while applying the conventional DCRM. In this paper, impact of UPFC operation on the DCRM has been reviewed and a refined DCRM has been proposed to detect faults properly in spite of UPFC operation. The porposed method is verified by simulation on the line-faulted system with UPFC.

A Study on the Dynamic Responses of a PWM Based UPFC for the Application to Power System Through EMTP Simulation (EMTP 모의를 통한 PWM 방식 UPFC의 동적 특성 분석 및 전력 시스템 적용에 관한 연구)

  • Won, Dong-Jun;Han, Hak-Geun;Lee, Song-Geun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.581-588
    • /
    • 2000
  • This paper presents the power system application of a PWM base UPFC through EMTP simulation. A PWM base UPFC model is constructed and detailed switching-level simulation is performed using EMTP. The dynamic responses of UPFC are analyzed. Based on the simulation results, the appropriate equivalent impedances of UPFC voltage-source model which represent similar dynamics with PWM based UPFC are determined by optimization routine. This paper also analyzes the influence of the power system strength on the dynamic responses of UPFC. Finally this paper shows that the performance of UPFC is improved by control parameter tuning when UPFC is installed to weak power system.

  • PDF

A Study on the Determination of Optimal UPFC Location (최적의 UPFC 위치 결정에 관한 연구)

  • Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.257-262
    • /
    • 2009
  • The unified power flow controller(UPFC) is one of the most effective devices in the FACTS family. This paper concerns about a filtering technique for reducing the computer calculation to determine the optimal location of UPFC in a power system. The sensitivities of the power generation cost for UPFC control parameters are evaluated. This technique requires that only one optimal power flow is run to get UPFC sensitivities for all possible transmission lines. To find out a optimal locating of a single UPFC in power system, an ideal transformer model which consists of a complex turns ratio and a variable shunt admittance was used. In this model, the UPFC control variables do not depend on UPFC input and output currents and voltages. The sensitivity method was tested on a 5-bus system derived from the IEEE 14-bus system and IEEE 14-bus system to establish its effectiveness.

  • PDF

Eigenvalue Distribution Analysis Via UPFC for Enhancing Dynamic Stability Into the Multi-machine Power System (다기 전력시스템의 동적안정도 향상을 위해 UPFC 연계시 고유치 분포 해석)

  • 김종현;정창호;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.487-492
    • /
    • 2003
  • This paper analyzes an eigenvalue distribution and enhancement of the small signal stabiligy when an Unified Power Flow Controller (UPFC) modeling is connected into the multi-machine power system. Recently a lot of attention has been paid to the subject of dynamic stability. It deals with analysis of eigenvalue sensitivities with respect to parameters of UPFC Controller and damping of interarea and local electromechanical oscillation modes using UPFC Controller. It provides an insight and understanding in the basic characteristics of damping effects of UPFC Controller and shows a very stable frequency response via UPFC in test model. The series branch of the UPFC is designed to damp the power oscillation during transients, while the shunt branch aims at maintaining the bus voltage and angle. Comprehensive time-domain simulation studies using PSS/E show that the proposed robost UPFC controller can enhance the small signal stability efficiently in spite of the variations of power system operating conditions.

A Study on Power Flow Control of UPFC by Series and Shunt Voltage Source Model (직.병렬전압원 모델에 의한 UPFC 전력조류제어에 관한 연구)

  • 정인학;김경신;정재길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.21-30
    • /
    • 2001
  • In this paper, in the power system having UPFC(Unified Power Flow Controller) Power flow of certain line is controlled to desired value also power flow analysis algorithm is reposed considering power flow constraints which is capable of analysis power flow of all system. This algorithm is applied to controlling line-overloading problems and the method of is prosed. By applying this algorithm to controlling line-over loading the method of controlling UPFC is proposed and the effectiveness of controlling UPFC is proposed and the effectiveness of controlling UPFC is verified through the research of practical system. Also, the equation to set up an initial value of stories and shunt voltage source of UPFC is proposed for the effective power analysis.

  • PDF

Analysis of Control Conflict between UPFC Multiple Control Functions and Their Interaction Indicator

  • Wang H. F.;Jazaeri M.;Cao Y. J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.315-321
    • /
    • 2005
  • Interactions among multiple control functions of a UPFC installed in a power system have been observed in power system simulation and been reported in authors' previous publications [1,2]. This paper presents new analytical results about these observed interactions and concludes that they are due to the control conflict between the series and shunt part of the UPFC, which are connected through the internal common capacitor inside the UPFC. Investigation in the paper reveals, for the first time as far as the authors are aware of, that the linkage pattern of UPFC series and shunt part decides whether the control functions implemented by the UPFC series and shunt part conflict each other or not. This linkage pattern of UPFC series and shunt part can be described by the flow of active power through the UPFC at steady-state operation of the power system. Hence in order to predict the possible interactions among multiple control functions of the UPFC, an interaction indicator is proposed in the paper which is the direction and amount of active power flow through the internal link of the UPFC series and shunt part at steady-state operation of the power system. This proposed interaction indicator can be calculated from power system load flow solution without having to run simulation of the power system with UPFC controllers installed. By using the indicator, the interactions among multiple control functions of the UPFC caused by badly set controller's parameters are excluded. Therefore the indicator only identifies the possible existence of inherent control conflict of the UPFC.

Case Study for UPFC Installation (UPFC 설치사례 연구)

  • Choi, Jong-Yun;Hong, Soon-Wook;Lee, Hak-Sung;Yoon, Jong-Su
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.297-300
    • /
    • 2001
  • This paper describes case studies for UPFC installation, The studies include UPFC at Inez, KT, CSC at Marcy, NY, and UPFC at Kangjin, Korea. For each case, engineering about problem of power system and benefits of UPFC installation are presented. And operation policy of Kangjin UPFC will be established by engineering of power system.

  • PDF

A UPFC Simulation using the EMTDC (EMTDC를 이용한 UPFC Simulation)

  • 송의호;전진홍;조동길;전영환;김학만
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.291-298
    • /
    • 2001
  • This paper deals with a full functional simulation of UPFC (Unified Power Flow Controller) which is a next generation FACTS (Flexible AC Transmission Systems) technology. Through analysis and modeling of he UPFC, power flow control is simulated. Active and reactive power controls, and input side bus voltage control are performed by EMTDC (Electro-Magnetic Transients in DC systems) which is a general purpose time domain simulation program for simulating power systems transients and its controls. Dynamic performances of the UPFC are verified by simulation results.

  • PDF

The Analysis of 80MVA UPFC application effect using EMTDC (PSCAD/EMTDC 80MVA UPFC 계통적용 효과 분석)

  • Yoon, Jong-Su;Park, Sang-Ho;Lim, Seong-Joo;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.259-262
    • /
    • 2001
  • 본 논문은 2003년 한전 실계통(154kV 강진 S/S)에 적용예정인 80MVA UPFC(Unified Power Flow Controller)시스템의 동적특성을 EMTDC/PSCAD를 이용하여 분석한 결과이다. UPFC는 FACTS 기기중 전압, 임피던스, 위상각등 전력전송 제어를 위한 송전선로의 모든 파라미터를 동시에 독립적으로 제어 할 수 있는 FACTS기기[1]로서, 미국 Inez S/S, Marcy S/S에 이어 강진 S/S에 80MVA 용량의 UPFC가 실계통 적용될 예정이다. 본 논문은 과도현상 해석 프로그램인 PSCAD/EMTDC를 이용하여 80MVA UPFC 제어기와 적용 대상 계통인 강진 S/S 인근 계통을 모델링하고 상정사고에 대한 UPFC 제어효과 분석에 대하여 기술하였다. 적용된 EMTDC UPFC모델은 실제 80MVA UPFC 기기에 채용된 전력회로, 제어기, 보호시스템과 동일하게 모델링하였으며 적용 대상계통은 PSS/E 해석결과와 동일하도록 강진 S/S인근 계통을 축약 등가화한 계통모델을 사용하였다.

  • PDF

Limit Resolution in the Decoupled UPFC Model for Power Flow (조류계산을 위한 분리된 UPFC 모형에서의 제한값 해결)

  • Kim, Tae-Hyeon;Seo, Jang-Cheol;Im, Jeong-Uk;Mun, Seung-Il;Park, Jong-Geun;Han, Byeon-Mun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.824-831
    • /
    • 1999
  • This paper presents new methods to resolve the important limits in the decoupled UPFC model for power flow, by which conventional power flow program can be performed with addition of two buses per one UPFC. In order to operate UPFC to the desired value, the series voltage and shunt current of UPFC should be computed. So a method of calculating these by simple equations after power flow is derived. However, the calculated magnitude of series voltage and/or shunt current of UPFC may not be allowed because of the UPFC limit \ulcorner to the ratings of inverters. In this case, the active power and the reactive power (or the voltage magnitude) of UPFC buses should be revised to resolve the limit. This paper proposes the Newton Raphson method to resolve these limits. Particularly, when resolving the series voltage magnitude, three strategies are proposed according to the priority of the active power and the reactive power (or the voltage magnitude).

  • PDF