• Title/Summary/Keyword: UO2

Search Result 621, Processing Time 0.028 seconds

Measurement of Terminal Velocity for Scatter Prevention of Powder in the Voloxidizer for Oxidation of UO$_{2}$ Pellet (UO$_{2}$ 펠릿 산화로의 분말 비산 방지를 위한 최종속도 측정)

  • Kim Young-Hwan;Yoon Ji-Sup;Jung Jae-Hoo;Jin Jae-Hyun;Hong Dong-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 2005
  • A voloxidizer for a hot cell demonstration, that handles spent fuels of a high radiation level in a limited space should be small and spent fuel powders should not be dispersed out of the equipment involved. In this study a density rate equation as well as the Stokes'equation has been proposed in order to obtain the theoretical terminal velocity of powders. The terminal velocity of U$_{3}$O$_{8}$ has been predicted by using the terminal velocity of SiO$_{2}$, and then determination has been the optimum air flow rate which is able to prevent powders from scattering. An equation which has shown a relationship between theoretical terminal velocities of U$_{3}$O$_{8}$ and SiO$_{2}$ has been derived with the help of the Stokes'equation, and then an experimental verification made for the theoretical Stokes' equation of SiO$_{2}$ by means of an experimental device made of acryl. The theoretical terminal velocity based on the proposed density rate equation has been verified by detecting U$_{3}$O$_{8}$ powders in a filter installed in the mock-up voloxidizer. As the results, the optimum air flow rates seem to be 20 LPM by the Stokes'equation while they are 14.5 L/min by the density rate equation. At the experiments with the mock-up voloxidizer, a trace amount of U$_{3}$O$_{8}$ seems to be detectable at the air flow rate of 14.5 L/min by the density rate equation, but U$_{3}$O$_{8}$ powders of 7$\mu$m diameter seem detectable at the air flow rate of 20 L/min by the Stokes'equation. It is revealed that 14.5 L/min is the optimum air flowe rate which is capable of preventing U$_{3}$O$_{8}$ powders from scattering in the UO$_{2}$ voloxidizer and the proposed density rate equation is proper to calculate the terminal velocity of U$_{3}$O$_{8}$ powders.

  • PDF

Development of a Simulation Program for the Li-Reduction Process of PWR Spent Fuel (PWR 사용후핵연료의 Li 환원과정 모사 프로그램 개발)

  • Lee, Yun-Hee;Shin, Hee-Sung;Jang, Ji-Woon;Kim, Ho-Dong;Yoon, Ji-Sup
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.335-344
    • /
    • 2006
  • In this paper a computer program was developed, which simulates the Li reduction process of PWR spent fuel, and the amount of a produced metal or chloride compound was calculated at the various amount of Li with the program. It establishes a database, which is composed of some characteristics related to a chemical reaction equation and thermodynamic data, and it calculates the transformed rate of PWR spent fuel oxide at the certain amount of Li by using the database as input data. As the results of the performance test of the program, it was validated that the transformed values of oxides, except for $Eu_2O_3$ and $Sm_2O_3$, were almost the same to within about a 6 % error with those calculated by the previous code and that the calculated amount of Li was also exactly consistent with the theoretical one, which is used for a complete reaction of each oxide in a single chemical reaction. A relationship between Li and the transformed metal of each oxide was analyzed on the basis of the quantities calculated with the verified development program. Of the results, when the amount of Li was given to be 250 mole, the 83.73 percentage of $UO_2$ was transformed into U while the remainder was still to be $UO_2$. In addition, it was appeared that the 297 mole of Li was needed to completely convert $UO_2$ into U.

  • PDF

Development of the slitting device on separation study of pellet and hull (펠릿과 헐의 분리 연구를 위한 슬리팅 장치 개발)

  • 정재후;윤지섭;홍동희;김영환;진재현;박기용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.236-239
    • /
    • 2003
  • The spent fuel slitting device is an equipment developed in order to feed UO$_2$pellet to the dry pulverizing/mixing device. In this study, we have compared and analyzed the handling method of the slitting and that of the pellet and hull, processing time, separating time for 20kgHM, the number of blades, on the existing slitting device using in DUPIC, and spent fuel management technology research and test facility. Also, we have compared and analyzed about an advantage and weak point, designing and producing, processing, establishment, operation, maintenance about the vertical and horizontal slitting device. Based on these results, we have developed the vertical slitting device. By using the results, we have enhanced the slitting processing time(over 40%)in comparison with DUPIC device, and it will is effectively applied to available data for designing and producing of the hot test facility.

  • PDF

Neutron Count Rate Measurement of $UO_2$ powder by Neutron Source

  • Kang Hee-Young;Koo Gil-Mo;Ha Jang-Ho;Kim Ho-Dong;Yang Myung-Seung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.344-349
    • /
    • 2005
  • Neutron count rate measurements to assay fissile content of uranium powder have been carried out in a neutron counter. The induced fission neutrons by Cf-252 neutron source are counted as the variation of fissile material in fuel material. The measured counts are compared with equivalent results obtained from calculation. It shows that the measured neutron counts versus quantity of $UO_2$ powder enrichment agreed reasonably well with the calculated values.

  • PDF

UCO 핵연료의 가압경수로 적용에 대한 경제성 평가

  • 류석진;김명현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.187-192
    • /
    • 1998
  • 탄소피막된 UCO 핵연료를 가압경수로의 핵연료로서 적용하는 방안에 대해 경제성 평가를 하였다 성형가공비용이 3675$/kgU이고, 성형가공 선행기간이 8개월이라고 가정하여 계산한 결과, 할인을 5%의 경우 UCO 핵연료는 $UO_2$ 핵연료에 비해 0.04mills/kwhre만큼 유리하였고, 할인을 10%의 경우 0.llmills/kwhre만큼 경제성면에서 유리하게 나왔다. 그러나 성형가공비용이 550$/kgU, 성형가공 선행기간이 12개월일 때는 할인을 5%, 10%경우 각각 0.41mills/kwhre, 0.47mills/kwhre 만큼 경제성측면에서 불리하게 나왔다. 따라서 UCO 핵연료의 가압경수로 적용은 $UO_2$ 핵연료와 비교할 때 할인을 5%의 경우 성형가공의 비용 및 선행기간의 1.37배까지, 할인을 10%의 경우 1.45배까지는 경제성을 갖는다고 할 수 있다.

  • PDF

Benchmark Test and Adjustment of an Updated Library from ENDF/B-IV (ENDF/B-IV로 생산된 열중성자로용 라이브러리의 벤치마크 계산 및 수정)

  • Jung-Do Kim;Jong Tai Lee
    • Nuclear Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.130-138
    • /
    • 1981
  • A LEOPARD library was updated from the ENDF/B-IV evaluated data using ETOT-3-ETOG-3 code system. The applicability of the library was assessed through benchmark tests for many light water-moderated critical assemblies, and adjustment techniques were applied to group constants to fit critical experiments. It is confirmed that the library from ENDF/B-IV, coupled with the use of LEOPARD code, leads to reasonable results for light water-moderated UO$_2$ fueled cores with the above adjustments.

  • PDF

Electronic States of Uranium Dioxide

  • Younsuk Yun;Park, Kwangheon;Hunhwa Lim;Song, Kun-Woo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.202-210
    • /
    • 2002
  • The details of the electronic structure of the perfect crystal provides a critically important foundation for understanding the various defect states in uranium dioxide. In order to understand the local defect and impurity mechanism, the calculation of electronic structure of UO$_2$ in the one-electron approximation was carried out, using a semi-empirical tight-binding formalism(LCAO) with and without f-orbitals. The energy band, local and total density of states for both spin states are calculated from the spectral representation of Green’s function. The bonding mechanism in Perfect lattice of UO$_2$ is discussed based upon the calculations of band structure, local and total density of states.

Effect of overpressurization on rim porosity in the high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.67-73
    • /
    • 1997
  • By introducing the concept of overpressurization of rim pores due to dislocation punching, the total pressure exerted on the rim pores is estimated. Then this concept is combined with the assumption that all the fission gases produced in the rim region are retained in the rim region to calculate the rim porosity. Rim porosities calculated in this way are compared with measured data, which produces reasonable agreement. Finally a correlation for the thermal conductivity of the rim region is obtained using the hypothesis that the rim region consists of pores and fully dense material of UO$_2$.

  • PDF

A preliminary study of pilot-scale electrolytic reduction of UO2 using a graphite anode

  • Kim, Sung-Wook;Heo, Dong Hyun;Lee, Sang Kwon;Jeon, Min Ku;Park, Wooshin;Hur, Jin-Mok;Hong, Sun-Seok;Oh, Seung-Chul;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1451-1456
    • /
    • 2017
  • Finding technical issues associated with equipment scale-up is an important subject for the investigation of pyroprocessing. In this respect, electrolytic reduction of 1 kg $UO_2$, a unit process of pyroprocessing, was conducted using graphite as an anode material to figure out the scale-up issues of the C anode-based system at pilot scale. The graphite anode can transfer a current that is 6-7 times higher than that of a conventional Pt anode with the same reactor, showing the superiority of the graphite anode. $UO_2$ pellets were turned into metallic U during the reaction. However, several problems were discovered after the experiments, such as reaction instability by reduced effective anode area (induced by the existence of $Cl_2$ around anode and anode consumption), relatively low metal conversion rate, and corrosion of the reactor. These issues should be overcome for the scale-up of the electrolytic reducer using the C anode.

Pyrolysis Reaction Characteristics of Biomass Fluidized Bed Reactor (기포(氣泡) 유동층(流動層) 반응기(反應器)에서 바이오매스 열분해(熱分解) 반응특성(反應特性))

  • Lee, Sun-Hoon;Yoo, Kyung-Seun;Lee, See-Hoon;Lee, Jae-Goo;Kim, Jae-Ho
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.75-82
    • /
    • 2005
  • Pyrolysis of biomass is one of the promising methods to obtain energy and valuable chemical stocks. Fast pyrolysis of Q. acutissima and L. letolepis has been carried out in a bubbling fluidized bed reactor to determine the optimum operating conditions of the pyrolyzer. Effects of reaction temperature, Uo/Umf, L/D ratio, and feed rate have been determined and the optimum conditions are as follows: $T\;=\;400^{\circ}C,\;U_o/U_{mf}\;=\;3.0,\;L/D\;=\;2.0$. Maximum yield of bio-oil was about 55% and the main compositions were carbohydrates, guaiacols, furans, phenols, and syringols. Product gas was consists of CO, $CO_2$, light hydrocarbons and the measured gas yield using the compositions agreed with the calculated value.

  • PDF