• 제목/요약/키워드: UO2+x

검색결과 55건 처리시간 0.019초

Investigation of molten fuel coolant interaction phenomena using real time X-ray imaging of simulated woods metal-water system

  • Acharya, Avinash Kumar;Sharma, Anil Kumar;Avinash, Ch.S.S.S.;Das, Sanjay Kumar;Gnanadhas, Lydia;Nashine, B.K.;Selvaraj, P.
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1442-1450
    • /
    • 2017
  • In liquid metal fast breeder reactors, postulated failures of the plant protection system may lead to serious unprotected accidental consequences. Unprotected transients are generically categorized as transient overpower accidents and transient under cooling accidents. In both cases, core meltdown may occur and this can lead to a molten fuel coolant interaction (MFCI). The understanding of MFCI phenomena is essential for study of debris coolability and characteristics during post-accident heat removal. Sodium is used as coolant in liquid metal fast breeder reactors. Viewing inside sodium at elevated temperature is impossible because of its opaqueness. In the present study, a methodology to depict MFCI phenomena using a flat panel detector based imaging system (i.e., real time radiography) is brought out using a woods metal-water experimental facility which simulates the $UO_2-Na$ interaction. The developed imaging system can capture attributes of the MFCI process like jet breakup length, jet front velocity, fragmented particle size, and a profile of the debris bed using digital image processing methods like image filtering, segmentation, and edge detection. This paper describes the MFCI process and developed imaging methodology to capture MFCI attributes which are directly related to the safe aspects of a sodium fast reactor.

Characterization and thermophysical properties of Zr0.8Nd0.2O1.9-MgO composite

  • Nandi, Chiranjit;Kaity, Santu;Jain, Dheeraj;Grover, V.;Prakash, Amrit;Behere, P.G.
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.603-610
    • /
    • 2021
  • The major drawback of zirconia-based materials, in view of their applications as targets for minor actinide transmutation, is their poor thermal conductivity. The addition of MgO, which has high thermal conductivity, to zirconia-based materials is expected to improve their thermal conductivity. On these grounds, the present study aims at phase characterization and thermophysical property evaluation of neodymium-substituted zirconia (Zr0.8Nd0.2O1.9; using Nd2O3 as a surrogate for Am2O3) and its composites with MgO. The composite was prepared by a solid-state reaction of Zr0.8Nd0.2O1.9 (synthesized by gel combustion) and commercial MgO powders at 1773 K. Phase characterization was carried out by X-ray diffraction and the microstructural investigation was performed using a scanning electron microscope equipped with energy dispersive spectroscopy. The linear thermal expansion coefficient of Zr0.8Nd0.2O1.9 increases upon composite formation with MgO, which is attributed to a higher thermal expansivity of MgO. Similarly, specific heat also increases with the addition of MgO to Zr0.8Nd0.2O1.9. Thermal conductivity was calculated from measured thermal diffusivity, temperature-dependent density and specific heat values. Thermal conductivity of Zr0.8Nd0.2O1.9-MgO (50 wt%) composite is more than that of typical UO2 fuel, supporting the potential of Zr0.8Nd0.2O1.9-MgO composites as target materials for minor actinides transmutation.

TRISO 입자를 포함하는 SiC 복합소결체의 소결 및 특성 평가 (Sintering and Characterization of SiC-matrix Composite Including TRISO Particles)

  • 이현근;김대종;박지연;김원주
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.418-423
    • /
    • 2014
  • Fully ceramic micro encapsulated (FCM) nuclear fuel is a concept recently proposed for enhancing the stability of nuclear fuel. FCM nuclear fuel consists of tristructural-isotropic (TRISO) fuel particles within a SiC matrix. Each TRISO fuel particle is composed of a $UO_2$ kernel and a PyC/SiC/PyC tri-layer which protects the kernel. The SiC ceramic matrix is created by sintering. In this FCM fuel concept, fission products are protected twice, by the TRISO coating layer and by the SiC ceramic. The SiC ceramic has proven attractive for fuel applications owing to its low neutron-absorption cross-section, excellent irradiation resistivity, and high thermal conductivity. In this study, a SiC-matrix composite containing TRISO particles was sintered by hot pressing with $Al_2O_3-Y_2O_3$ additive system. Various sintering conditions were investigated to obtain a relative density greater than 95%. The internal distribution of TRISO particles within the SiC-matrix composite was observed using an x-ray radiograph. The fracture of the TRISO particles was investigated by means of analysis of the cross-section of the SiC-matrix composite.

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Shaimerdenov, Asset;Gizatulin, Shamil;Dyussambayev, Daulet;Askerbekov, Saulet;Ueta, Shohei;Aihara, Jun;Shibata, Taiju;Sakaba, Nariaki
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2792-2800
    • /
    • 2022
  • In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.

분광기를 이용한 우라늄산화물(UOX) 소결체의 밀도 분석 (Analysis of Sintered Density for Uranium Oxide Pellet Using Spectrophotometer)

  • 이병국;양승철;곽동용;조현광;이준호;배영문;이영우
    • 공업화학
    • /
    • 제28권3호
    • /
    • pp.345-350
    • /
    • 2017
  • 원자력연료 제조공정에서 생산되는 우라늄산화물(uranium oxide, UOX) 소결체의 밀도 분석은 일반적으로 소결공정을 거친 후, 소결체의 표본을 가지고 측정한다. 본 연구에서는 우라늄산화물의 중간물질인 중우라늄산암모늄(ammonium diuranate)의 색도를 분광기(spectrophotometer)로 측정함으로써 소결공정 이전에 우라늄산화물 소결체의 밀도를 분석해 보았다. 중우라늄산암모늄 표준 샘플 5개를 통해 얻은 명도 및 색의 좌푯(L, a, b)값과 통상적인 방법으로 얻은 소결체 밀도의 상관관계 추세선을 바탕으로 표적 샘플의 밀도를 분석한 결과, L 값에 대한 소결체의 밀도 분석이 결정계수 $R^2$ 값 0.9967로 가장 신뢰성이 높게 나왔음을 확인하였다. a 값에 대한 결정계수 $R^2$ 값은 0.9534로 상관관계가 높은 편이나 L 값보다는 낮았다. 이에 반해 b 값에 대한 결정계수 $R^2$ 값은 0.4349로 상관관계가 거의 없었다.