• Title/Summary/Keyword: UMZ

Search Result 3, Processing Time 0.017 seconds

Effects of Annealing and Post-weld Heat Treatments on Corrosion Behaviors of Super Austenitic Stainless Steel (소둔 및 용접후열처리가 슈퍼 오스테나이트계 스테인리스강의 부식거동에 미치는 영향)

  • Yun, Duck Bin;Park, Jin Sung;Cho, Dong Min;Hong, Seung Gab;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.426-434
    • /
    • 2021
  • The effect of two different annealing temperatures on the level of the second phase precipitated in the microstructure and the corrosion behaviors of super austenitic stainless steel were examined. The sample annealed at a higher temperature had a significantly lower fraction of the sigma phase enriched with Cr and Mo elements, showing more stable passivity behavior during the potentiodynamic polarization measurement. However, after the welding process with Inconel-type welding material, severe corrosion damage along the interface between the base metal and the weld metal was observed regardless of the annealing temperature. This was closely associated with the precipitation of the fine sigma phase with a high Mo concentration in the unmixed zone (UMZ) during the welding process, leading to the local depletion of Mo concentrations around the sigma phase. On the other hand, the fraction of the newly precipitated fine sigma phase in the UMZ was greatly reduced by post-weld heat treatment (PWHT), and the corrosion resistance was greatly improved. Based on the results, it is proposed that the alloy composition of welding materials and PWHT conditions should be further optimized to ensure the superior corrosion resistance of welded super austenitic stainless steel.

Initial Reaction of Zn Precursors with Si (001) Surface for ZnO Thin-Film Growth (ZnO 박막 성장을 위한 Zn 전구체와 Si (001) 표면과의 초기 반응)

  • Kim, Dae-Hee;Lee, Ga-Won;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.463-466
    • /
    • 2010
  • We studied the initial reaction mechanism of Zn precursors, namely, di-methylzinc ($Zn(CH_3)_2$, DMZ) and diethylzinc ($Zn(C_2H_5)_2$, DEZ), for zinc oxide thin-film growth on a Si (001) surface using density functional theory. We calculated the migration and reaction energy barriers for DMZ and DEZ on a fully hydroxylized Si (001) surface. The Zn atom of DMZ or DEZ was adsorbed on an O atom of a hydroxyl (-OH) due to the lone pair electrons of the O atom on the Si (001) surface. The adsorbed DMZ or DEZ migrated to all available surface sites, and rotated on the O atom with low energy barriers in the range of 0.00-0.13 eV. We considered the DMZ or DEZ reaction at all available surface sites. The rotated and migrated DMZs reacted with the nearest -OH to produce a uni-methylzinc ($-ZnCH_3$, UMZ) group and methane ($CH_4$) with energy barriers in the range of 0.53-0.78 eV. In the case of the DEZs, smaller energy barriers in the range of 0.21-0.35 eV were needed for its reaction to produce a uni-ethylzinc ($-ZnC_2H_5$, UEZ) group and ethane ($C_2H_6$). Therefore, DEZ is preferred to DMZ due to its lower energy barrier for the surface reaction.