• Title/Summary/Keyword: ULTIMATE 기법

Search Result 163, Processing Time 0.024 seconds

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles (조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.143-162
    • /
    • 1998
  • In the present study, a procedure to predict the depth from the ground surface to the center of bulging failure zone in each of the square granular group piles under a rigid mat foundation is proposed. This analytical procedure is established on the basis of the conical modeling of bulging failure shape and the replacement ratio of soft foundation soils. considering the effect of a share of procedure to estimate the ultimate cylindrical pressure in the area reinforced with granular piles and the ultimate bearing capacity of each of granular piles in group. This analytical procedure is also established on the basis of the pre-determined depth to the zone of bulging failure and an iterative solution technique. Finally the analytical procedures proposed in this study are verified by analyzing the results of 3D finite element analyses, and the predictions of ultimate bearing capacity of granular piles are compared with the results obtained from the tests, empirical equation and 3D finite element analyses.

  • PDF

A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis (CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준)

  • Kim, Seongmin;Lee, Ju-Hyung;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.59-69
    • /
    • 2018
  • In order to use the limit equilibrium theory, it is necessary to find a slip line under the ultimate failure condition. The strength reduction method using the Lagrangian finite element method defines the ultimate failure state at a time when the numerical solution cannot converge within the certain number of the iteration. When the coupled Eulerian-Lagrangian (CEL) method is used, however, such definition is inappropriate because the numerical solution of the CEL method can converge even under the ultimate failure condition. In this study, an objective condition designating the ultimate failure state in the finite element analysis adopting the CEL method was proposed. In the problem of the bearing capacity of the undrained soft ground subjected to the strip footing loading, we found that the rate of the plastic dissipated energy is highly sensitive at the load of the theoretical limit of the ultimate failure state.

A numerical simulation of propagating turbidity currents using the ULTIMATE scheme (ULTIMATE 기법을 이용한 부유사 밀도류 전파 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • This study presents a numerical model for simulating turbidity currents using the ULTIMATE scheme. For this, the layer-averaged model is used. The model is applied to laboratory experiments, where the flume is composed of sloping and flat parts, and the characteristics of propagating turbidity currents are investigated. Due to the universal limiter of the ULTIMATE scheme, the frontal part of the turbidity currents at a sharp gradient without numerical oscillations is computed. Simulated turbidity currents propagate super-critically to the end of the flume, and internal hydraulic jumps occur at the break-in-slope after being affected by the downstream boundary. It is found that the hydraulic jumps are computed without numerical oscillations if Courant number is less than 1. In addition, factors that affect propagation velocity of turbidity currents is studied. The particle size less than $9{\mu}m$ does not affect propagation velocity but the buoyancy flux affects clearly. Finally, it is found that the numerical model computes the bed elevation change due to turbidity currents properly. Specifically, a discontinuity in the bed elevation, arisen from the hydraulic jumps and resulting difference in sediment entrainment, is observed.

Ultimate Strength Based Reliability of Corroded Ship Hulls (부식을 고려한 선각거더의 최종강도 신뢰성)

  • Paik, J.K.;Yang, S.H.;Kim, S.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.96-110
    • /
    • 1996
  • Aging ships can suffer structural damage due to corrosion, fatigue crack etc., and possibility of catastrophic failure of seriously damaged ships is very high. To reduce the risk of loss of ships due to hull collapse, it is essential to evaluate ultimate hull strength of aging ships taking into account various uncertainties associated with structural damages. In this paper, ultimate strength-based reliability analysis of ship structures considering wear of structural members due to corrosion is described. A corrosion rate estimate model for structural members is introduced. An ultimate limit state function of a ship hull is formulated taking into account corrosion effects. The model is applied to an existing oil tanker, and reliability index associated with hull collapse is calculated by using the second-order reliability method (SORM). Discussions on structure safety of corroded ships are made.

  • PDF

Change of Statical Behavior and Ultimate Capacity of Steel Cable-stayed Bridges after Cable Failure (케이블 단선 후 강사장교의 구조 및 극한 거동 변화)

  • Kim, Seung-Jun;Choi, Jun-Ho;Won, Deok-Hee;Han, Taek-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.747-761
    • /
    • 2011
  • This paper presents an investigation on the change in the statical behavior and the ultimate capacity of steel cable-stayed bridges after cable failure. Cable failure can occur due to fire, direct vehicle clash accidents, cable or anchorage fatigue, and so on. Moreover, the cable may be temporarily disconnected during cable replacement work. When cable failure occurs, the load, that was supported by the broken cable is first transferred to another cable. Then the structural state changes due to the interaction between the girder, mast, and cables. Moreover, it can be predicted that the ultimate capacity will decrease after cable failure, because of the loss of the support system. In this study, the analysis method is suggested to find the new equilibrium state after cable failure based on the theory of nonlinear finite element analysis. Moreover, the ultimate analysis method is also suggested to analyze the ultimate behavior of live loads after cable failure. For a more rational analysis, a three-step analysis procedure is suggested and used, which consisted of initial shape analysis, cable failure analysis, and live load analysis. Using this analysis method, an analytical study was performed to investigate the changes in the structural state and ultimate behavior of steel cable-stayed bridges.

Development of Nonlinear Analysis Technic to Determine the Ultimate Load in Electric Transmission Tower (송전철탑의 극한하중 도출을 위한 비선형해석 기법)

  • Kim, Woo Bum;Choi, Byong Jeong;Ahn, Jin Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.389-398
    • /
    • 2008
  • The current design practice of electric transmission tower is based on the allowable stress design. However, it is difficult to find the cause behind a transmission tower's collapse by the above design approach as the collapse is caused by large secondary deformations based on and geometrical nonlinear behavior.influence factor for the nonlinear behavior is mainly residual stress, initial imperfection and end restraints on members. In this study, the necessity of the nonlinear analysis is examined through the comparison between elastic ana the nonlinear analysis, a new analytical method (equivalent nonlinear analysis technique) is proposed. To confirm the reliability of the proposed method, the computed ultimate load of the transmission tower using the method was compared with that of the nonlinear finite element analysis. Effects of parameters, such as compressive force and the slenderness ratio of the brace member on the main post member, were investigated. The effective member length according to influential parameters was formulated in table form for practical purposes.

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles Reinforced with Steelpipe Skirts (강관스커트 보강 조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;황정순;강인규;고용일
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.79-98
    • /
    • 1999
  • In the present study, a simple finite element method of analysis to predict non-uniform settlements at the interface between the mat foundation and foundation soils is proposed. Based on the proposed finite element method of analysis, the method to evaluate load sharing ratios of the foundation soils adjacent to the granular group piles is also presented. Further proposed is a procedure to estimate ultimate bearing capacity of the skirted granular group piles in a square pattern. To verify validity of the proposed methods and the estimated ultimate bearing capacity of the skirted group piles, comparisons are made with the results analyzed by using the PENTAGON3D FEM program. Finally, behavior characteristics with different reinforcement patterns of the skirts and the effect of an increase of ultimate bearing capacity due to the skirts are analyzed in connection with the design parameters.

  • PDF

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.

Analytical Study of Ultimate Behavior of Steel Cable-stayed Bridges (완성계 강사장교의 극한 거동의 해석적 연구)

  • Kim, Seungjun;Im, Seok-Been;Lee, Kee-Sei;Kang, Young-Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.85-95
    • /
    • 2012
  • This paper presents an investigation on the ultimate behavior of steel cable-stayed bridges using nonlinear finite element analysis method. Cable-stayed bridges exhibit various geometric nonlinearities as well as material nonlinearities, so rational nonlinear finite element analysis should be performed for investigation of the ultimate behavior. In this study, ultimate behavior of steel cable-stayed bridges was studied using rational ultimate analysis method. Nonlinear equivalent truss element and nonlinear frame element were used for modeling the cable, girder and mast. Moreover, refined plastic hinge method was adopted for considering the material nonlinearity of steel members. In this study, the 2-step analysis method was used. Before live load analysis, initial shape analysis was performed in order to consider the dead load condition. For investigation of the ultimate behavior of steel cable-stayed bridges, analysis models which span length is 920.0 m were used. Radiating type and fan type were considered as the cable-arrangement types. With various quantitative evidences such as load-displacement curves, deformed shapes, locations of the yield point or region, bending moment distribution and so on, the ultimate behavior of steel cable-stayed bridges was investigated and described in this paper.

Ultimate Defect Detection Using Run Length Coding in Automatic Vision Inspection System (영상기반 자동검사시스템에서 Run Length Coding을 이용한 한도 결함 검출 전처리 기법)

  • Joo, Younjg-Bok;Kwon, Oh-Young;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.8-11
    • /
    • 2012
  • Automated Vision Inspection (AVI) systems automatically detect any defect feature in a surface image. The performance of the system can be measured under a special circumstances such as ultimate defect detection. In this situation, the defect signal level is similar to noise level and it becomes hard to make a solid decision with AVI systems. In this paper, we propose an effective preprocessing technique to enhance SNR (Signal to Noise Ratio). The method is motivated by some principles of HVS (Human Visual System) and RLC (Run Length Coding) techniques is used for this purpose. The proposed preprocessing technique enhances SNR under ultimate defect conditions and improves overall performance of AVI system.