• Title/Summary/Keyword: ULF waves

Search Result 16, Processing Time 0.026 seconds

Energetic Electron and Proton Interactions with Pc5 Ultra Low Frequency (ULF) Waves during the Great Geomagnetic Storm of 15-16 July 2000

  • Lee, Eunah;Mann, Ian R.;Ozeke, Louis G.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.145-158
    • /
    • 2022
  • The dynamics of the outer zone radiation belt has received a lot of attention mainly due to the correlation between the occurrence of enhancing relativistic electron flux and spacecraft operation anomalies or even failures (e.g., Baker et al. 1994). Relativistic electron events are often observed during great storms associated with ultra low frequency (ULF) waves. For example, a large buildup of relativistic electrons was observed during the great storm of March 24, 1991 (e.g., Li et al. 1993; Hudson et al. 1995; Mann et al. 2013). However, the dominant processes which accelerate magnetospheric radiation belt electrons to MeV energies are not well understood. In this paper, we present observations of Pc5 ULF waves in the recovery phase of the Bastille day storm of July 16, 2000 and electron and proton flux simultaneously oscillating with the same frequencies as the waves. The mechanism for the observed electron and proton flux modulations is examined using ground-based and satellite observations. During this storm time, multiple packets of discrete frequency Pc5 ULF waves appeared associated with energetic particle flux oscillations. We model the drift paths of electrons and protons to determine if the particles drift through the ULF wave to understand why some particle fluxes are modulated by the ULF waves and others are not. We also analyze the flux oscillations of electrons and protons as a function of energy to determine if the particle modulations are caused by a ULF wave drift resonance or advection of a particle density gradient. We suggest that the energetic electron and proton modulations by Pc5 ULF waves provide further evidence in support of the important role that ULF waves play in outer radiation belt dyanamics during storm times.

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.

Development of Ground-Based Search-Coil Magnetometer for Near-Earth Space Research

  • Shin, Jehyuck;Kim, Khan-Hyuk;Jin, Ho;Kim, Hyomin;Kwon, Jong-Woo;Lee, Seungah;Lee, Jung-Kyu;Lee, Seongwhan;Jee, Geonhwa;Lessard, Marc R.
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.509-515
    • /
    • 2016
  • We report on development of a ground-based bi-axial Search-Coil Magnetometer (SCM) designed to measure time-varying magnetic fields associated with magnetosphere-ionosphere coupling processes. The instrument provides two-axis magnetic field wave vector data in the Ultra Low Frequency or ULF (1 mHz to 5 Hz) range. ULF waves are well known to play an important role in energy transport and loss in geospace. The SCM will primarily be used to observe generation and propagation of the subclass of ULF waves. The analog signals produced by the search-coil magnetic sensors are amplified and filtered over a specified frequency range via electronics. Data acquisition system digitizes data at 10 samples/s rate with 16-bit resolution. Test results show that the resolution of the magnetometer reaches $0.1pT/{\sqrt{Hz}}$ at 1 Hz, and demonstrate its satisfactory performance, detecting geomagnetic pulsations. This instrument is scheduled to be installed at the Korean Antarctic station, Jang Bogo, in the austral summer 2016-2017.

Effects of plasmaspheric density structure on the characteristics of geomagnetic ULF pulsations

  • Choi, Jiwon;Lee, Dong-Hun;Kim, Khan-Hyuk;Lee, Ensang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.116.2-116.2
    • /
    • 2012
  • The structure of plasmasphere plays an important role in determining properties of geomagnetic ULF pulsations such as Pi 2 pulsations and field line resonances (FLRs) in the Earth's magnetosphere. We have performed a 3-D MHD wave simulation to investigate the generation and propagation of ULF waves in dipole geometry. Various 3-D density structures are assumed, which include a relatively sharp density gradient and gradually less slopes at the plasmapause. The former condition can refer to the plasmasphere from local midnight to dawn, whereas the latter represents the region near noon to dusk where it bulges out. We show how Pi 2 pulsations and FLRs differentially appear at both multi-point satellite locations and ground stations for different local times. Our results suggest that 1) the local radial density structure significantly affects the peak frequencies for Pi 2 oscillations, while the polarization changes remain similar in the radial direction, and 2) the radial location of strong FLRs varies for different density profiles. It is also suggested how multi satellite measurements and ground-based observations can confirm this differential feature in space.

  • PDF

A Correlation Study for Substorm Injection Electrons in Relativistic Electron Events

  • Hwang, Jung-A;Kyoung W. Min;Lee, Dae-Young;Lee, Ensang
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.36-36
    • /
    • 2003
  • While it is presumed that substorm injection electrons of a few hundred keV are the seeds for relativistic electrons frequently observed during the recovery phase of storms, correlation between the two events has not been well explored with the observed satellite data. We would like to address this problem in the present paper using the data from the geosynchronous GOES and LANL satellites as well as from the polar orbiting NOAA satellites. Our statistical study shows the two channels of LANL SOPA instrument, 105 150 keV and 150 225 keV, best correlates with the increase of the flux levels of GOES relativistic electrons. Especially, the relativistic electron events are not observed when the flux levels of these two channels are maintained low in the substorm injections, regardless of the level of the ULF activities. The conclusion does not change whether the substorm injections occur . during the storm recovery phase or during the non-storm time. As the ULF waves are observed quite frequently over the entire range of L=4 to L=7, the reason why REEs are seen mostly during the storm time seems to be related to the fact that storm-time substorms produce more seed electrons than the substorms that occur during the non-storm time.

  • PDF