• 제목/요약/키워드: UHV transmission tower-line system

검색결과 4건 처리시간 0.016초

Critical seismic incidence angle of transmission tower based on shaking table tests

  • Tian, Li;Dong, Xu;Pan, Haiyang;Gao, Guodong;Xin, Aiqiang
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.251-267
    • /
    • 2020
  • Transmission tower-line systems have come to represent one of the most important infrastructures in today's society. Recent strong earthquakes revealed that transmission tower-line systems are vulnerable to earthquake excitations, and that ground motions may arrive at such structures from any direction during an earthquake event. Considering these premises, this paper presents experimental and numerical studies on the dynamic responses of a 1000 kV ultrahigh-voltage (UHV) transmission tower-line system under different seismic incidence angles. Specifically, a 1:25 reduced-scale experimental prototype model is designed and manufactured, and a series of shaking table tests are carried out. The influence of the seismic incidence angle on the dynamic structural response is discussed based on the experimental data. Additionally, the incidence angles corresponding to the maximum peak displacement of the top of the tower relative to the ground (referred to herein as the critical seismic incidence angles) are summarized. The experimental results demonstrate that seismic incidence angle has a significant influence on the dynamic responses of transmission tower-line systems. Subsequently, an approximation method is employed to orient the critical seismic incidence angle, and a corresponding finite element (FE) analysis is carried out. The angles obtained from the approximation method are compared with those acquired from the numerical simulation and shaking table tests, and good agreement is observed. The results demonstrate that the approximation method can properly predict the critical seismic incidence angles of transmission tower-line systems. This research enriches the available experimental data and provides a simple and convenient method to assess the seismic performance of UHV transmission systems.

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.

대형 송전선로에 의한 TV 전파장해 고찰 (Ghost and Blocking of TV signal by UHV Transmission Lines)

  • 신구용;이동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1776-1778
    • /
    • 1998
  • KEPCO has been constructing the 765 kV double circuit transmission line since 1997. It is worried that the 765 kV transmission lines make TV interference(Ghost and Blocking) due to high tower and multi sub-conductors. This paper presents the mechanism, the measuring method and the results of TV ghost and blocking measurement using a new TV ghost measurement system in a vehicle which was developed by KEPRI.

  • PDF

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.