• Title/Summary/Keyword: UHT milk

Search Result 52, Processing Time 0.054 seconds

Lactulose Content and Availability of Calcium and Ascorbic Acid of the Commercial Milk Products in Korean Market (한국시판우유의 Lactulose 함량 및 Calcium, Ascorbic Acid의 이용성 관한 연구)

  • 이경혜
    • Journal of Nutrition and Health
    • /
    • v.29 no.9
    • /
    • pp.1042-1048
    • /
    • 1996
  • In order to investigate heating rate of commercial milk products in korean market, lactulose content and availability of calcium and ascorbic acid were measured. The pH range for raw and commercial milk was 6.5-6.75, and protein content was 2.5-3.13%. The acid degree value (。SH)showed between 5.3 and 7.1. There were no differences in pH, protein and acid degree among 3 types of milk. The portion ionic Ca content in UHT-milk(32.4%) and pasteurized milk (27%) increased significantly in comparison with raw milk (4.6%). Pasteurization led to loss of 20% ascorbic acid, and losses of UHT-treatment are approximately twice as high. Significant differences of lactulose content between UHT milk and pasteurized milk were observed. Some of UHT milk products showed very high value of lactulose content like sterilized milk. It is well known that the stress caused by indirect UHT treatment is slightly higher compared with the direct process. The results in this experiment suggested that most of UHT milk in korean market may be treated by indirect UHT method. In oder to keep the adventages of milk component, the heating methods of milk have to be reconsidered.

  • PDF

Chemical and Microbiological Quality, Capillary Electrophoresis Pattern, and Rennet Coagulation of UHT-treated and Irradiated Milk

  • Ham, Jun-Sang;Shin, Ji-Hye;Noh, Young-Bae;Jeong, Seok-Geun;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Wan-Kyu;Jo, Cheo-Run
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.58-65
    • /
    • 2008
  • To see the possibility of irradiation as an alternative to ultra high temperature (UHT) sterilization, the quality characteristics of milk were analyzed. Milk treated by UHT ($135^{\circ}C$ for 4 sec) and irradiation at higher than 3 kGy showed no viable counts after 7 days of storage at $4^{\circ}C$. The contents of certain amino acids of milk, such as Arg, Asp, Glu, Ile, Leu, Lys, Pro, Ser, Thr, and Tyr, were lower in irradiated groups at 10 kGy than in UHT-treated one, but no difference was observed between irradiated milks at less than 5 kGy and UHT. The capillary electrophoresis (CE) patterns of the milk irradiated at 10 kGy showed a similar trend to the raw milk, low temperature long time (LTLT, $63^{\circ}C$ for 30 min), and high temperature short time (HTST, $72^{\circ}C$ for 15 sec) treated. However, the CE pattern of UHT-treated milk was different. Rennet coagulation test agreed with the CE results, showing that all milk samples were coagulated by rennet addition except for UHT-treated milk after 1 hr. These results suggest that irradiation of milk reduce the content of individual amino acids but it may not induce severe conformational change at a protein level when compared with UHT treatment.

Microbiological Qualities and Post-Pasteurization Contaminations of UHT Milk Produced in Korea (한국에서 생산되는 UHT 우유의 살균 후 오염과 미생물학적 품질)

  • Park, Seung-Young;Park, Jung-Min;Yang, Jin-Oh;Jung, Hoo-Kil;Chun, Ho-Nam;Lee, Byong-Hoon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 2006
  • Total 150 packs of UHT milk and UHT-ESL milk, produced by different domestic milk companies, were compared at refrigerated and room temperature for 35 days in terms of microbiological qualities such as incidence date, number of incidence packs, and numbers of bacteria, and post-pasteurization contamination. Overall qualities of UHT-ESL milk were slightly better than that of UHT milk in relations to total bacteria in milk. No coliforms were detected in two groups of UHT milk samples after 35 days. Aerobic spores were more common in two brands of UHT milks stored in 20$^{\circ}$C than those in 7$^{\circ}$C, in which spores were broken out at 7 and 14 day. No incidences of thermoduric bacteria were founded until 14 days in two groups of UHT milks, but high level of counts (<300${\sim}$<3,000 CFU/ml) after 21 days at 20$^{\circ}$C and 40${\sim}$3,600 CFU/ml at 7$^{\circ}$C were detected, respectively. Psychrotrophic bacteria were higher in UHT milk than in UHT-ESL milk, in which began to detect at 28 days. No post-pasteurization contamination by salmonella spp. and staphylococcus aureus were found throughout the experimental periods. One may conclude that the shelf life of UHT milk under cold-chains system can be extended up to 21days, as long as UHT treated milk are filled in sterilized containers by aseptic packaging system.

  • PDF

국내 시판우유의 보관방법별 품질변화에 관한 연구

  • Jeong, Seok-Chan;Kim, Gye-Hui;Jeong, Myeong-Eun;Kim, Seong-Il;Byeon, Seong-Geun;Lee, Deuk-Sin;Park, Seong-Won;Jo, Nam-In;Kim, Ok-Gyeong
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.23-40
    • /
    • 2002
  • This study was conducted to investigate the quality changes of the UHT(ultra-high temperature), LTLT(law temperature long time) and HTST(high temperature short time) treated milk samples by storage conditions for 6 months from August 2000 to February 2001. The UHT treated milk samples collected from 3 plants(A, B and C) were stored at l0$^{\circ}$C and room temperature(dark and light exposure) for 6 months, and the LTLT and HTST treated milk samples(D and E) were also stored for 30 days. The UHT pasteurized milk of A, B and C plant was treated at 130$^{\circ}$C for 2-3s, 133$^{\circ}$C for 2-3s and 135$^{\circ}$C for 4s, respectively. The UHT sterilized milk of A and B plant was treated at 140$^{\circ}$C for 2-3s and 145$^{\circ}$C for 3-4s, respectively. The LTLT milk of D plant was treated at 63$^{\circ}$C for 30 mins, and the HTST milk of E plant was treated at 72$^{\circ}$C for 15s. All of the raw milk samples collected from storage tank in 5 milk plants were showed less than 4.0 X 10$^5$cfu/ml in standard plate count, and normal level in acidity, specific gravity, and component of milk. Preservatives, antibiotics, sulfonamides and available chloride were not detected in both raw and heat treated milk samples obtained from 5 plants. One(10%) of 10 UHT pasteurized milk samples obtained from B plant and 2 (20%) of 10 from C were not detected in bacterial count after storage at 37$^{\circ}$C for 14 days, but all of the 10 milk samples from A were detected. No coliforms were detected in all samples tested. No bacteria were also detected in carton, polyethylene and tetra packs collected from the milk plants. A total of 300 UHT pasteurized milk samples collected from 3 plants were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 and 6 months, 11.3%(34/300) were kept normal in sensory test, and 10.7%(32/300)were negative in bacterial count. The UHT pasteurized milk from A deteriorated faster than the UHT pasteurized milk from B and C. The bacterial counts in the UHT pasteurized milk samples stored at 10$^{\circ}$C were kept less than standard limit(2 ${\times}$ 10$^4$ cfu/ml) of bacteria for 5 days, and bacterial counts in some milk samples were a slightly increased more than the standard limit as time elapsed for 6 months. When the milk samples were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C), the bacterial counts in most of the milk samples from A plant were more than the standard limit after 3 days of storage, but in the 20%${\sim}$30%(4${\sim}$6/20) of the milk samples from B and C were less than the standard limit after 6 months of storage. The bacterial counts in the LTLT and HTST pasteurized milk samples were about 4.0 ${\times}$ 10$^3$ and 1.5 ${\times}$ 101CFU/ml at the production day, respectively. The bacterial counts in the samples were rapidly increased to more than 10$^7$ CFU/ml at room temperature(12$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 days, but were kept less than 2 ${\times}$ 10$^3$ CFU/ml at refrigerator(l0$^{\circ}$C) for 7 days of storage. The sensory quality and acidity of pasteurized milk were gradually changed in proportion to bacterial counts during storage at room temperature and 10$^{\circ}$C for 30 days or 6 months. The standard limit of bacteria in whole market milk was more sensitive than those of sensory and chemical test as standards to determine the unaccepted milk. No significant correlation was found in keeping quality of the milk samples between dark and light exposure at room for 30 days or 6 months. The compositions of fat, solids not fat, protein and lactose in milk samples were not significantly changed according to the storage conditions and time for 30 days or 6 months. The UHT sterilized milk samples(A plant ; 20 samples, B plant ; 110 samples) collected from 2 plants were not changed sensory, chemical and microbiological quality by storage conditions for 6 months, but only one sample from B was detected the bacteria after 60 days of storage. The shelflife of UHT pasteurized milk in this study was a little longer than that reported by previous surveys. Although the shelflife of UHT pasteurized milk made a significant difference among three milk plants, the results indicated that some UHT pasteurized milk in polyethylene coated carton pack could be stored at room temperature for 6 months. The LTLT and HTST pasteurized milk should be sanitarily handled, kept and transported under refrigerated condition(below 7$^{\circ}$C) in order to supply wholesome milk to consumers.

  • PDF

Nutritional and Organoleptical Aspects of UHT Treated Milk (UHT처리된 우유의 영양 및 미각적 분석)

  • Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.276-282
    • /
    • 1982
  • The UHT treatment and consequent storage effect on nutritional value of milk are discussed. Compared with the conventional sterilization the UHT treatment of milk represents a relatively small thermal stress. During UHT processing, nutritive value of protein, fat, carbohydrates, fat-soluble vitamins and minerals are generally unaffected. Nutritive value of some water soluble vitamins and protein are adversely affected in a small degree during storage. It has been recommended that UHT milk has best nutritional and organoleptic qualities on storage under refrigeration. Some unsolved future problems are also suggested.

  • PDF

Effects of Milks by various Heat Treatment on Growth and Protein and Calcium Metabolism of Rats (우유의 열처리 정도가 흰쥐가 성장, 단백질 및 칼슘 대사에 미치는 영향)

  • 이정아
    • Journal of Nutrition and Health
    • /
    • v.28 no.2
    • /
    • pp.144-151
    • /
    • 1995
  • This study investigates the supplementing effects of milks by various heat treatment on growth performance and protein and calcium metabolism of rats. For 4 weeks, raw, LTLT-HTST-and UHT-processed milks were given to rats which fed on a calcium free, semi-synthetic diet containing 5%casein. There were no significant differences among the experimental groups in weight gain, feed efficiency ratio and the serum level of total protein and calcium. Also, no significant differences were showed in protein efficiency, nitrogen balance, apparent protein digestibiltiy and the contents of weight and calcium of the left femur as well as 2 incisors. However, the biological value of protein in the UHT-milk group was significantly higher than that of the raw-milk group. The apparent calcium digestibility and calcium balance in the UHT-milk group were higher than those in the raw-, LTLT- and HTST-milk groups. The weight of left femur in all the groups supplemented with various heat-treated milks was significantly impair the nutritive value of protein and calcium in milk. Futhermore, UHT-processing may improve the bioavailability of protein and calcium in milk.

  • PDF

Effects of the Heat-Treatment on the Nutritional Quality of Milk - I. Historical Development of the Heat-Treatment Technology in Milk - (우유의 열처리가 우유품질과 영양가에 미치는 영향 - I. 우유 열처리 기술의 발달사 -)

  • Jung, Anna;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • The main purpose of milk heat-treatment is to improve milk safety for consumer by destroying foodborne pathogens. Secondly, heat-treatment of milk is to increase maintaining milk quality by inactivating spoilage microorganisms and enzymes. Pasteurization is defined by the International Dairy Federation (IDF, 1986) as a process applied with the aim of avoiding public health hazards arising from pathogens associated with milk, by heat treatment which is consistent with minimal chemical, physical and organoleptic changes in the product. Milk pasteurization were adjusted to $63{\sim}65^{\circ}C$ for 30 minutes (Low temperature long time, LTLT) or $72{\sim}75^{\circ}C$ for 15 seconds (High temperature short time, HTST) to inactivate the pathogens such as Mycobacterium bovis, the organism responsible for tuberculosis. Ultra-high temperature processing (UHT) sterilizes food by heating it above $135^{\circ}C$ ($275^{\circ}F$) - the temperature required to destroy the all microorganisms and spores in milk - for few seconds. The first LTLT system (batch pasteurization) was introduced in Germany in 1895 and in the USA in 1907. Then, HTST continuous processes were developed between 1920 and 1927. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. At present, UHT is most commonly used in milk production.

A Study on the Sensory Characteristics of Various Heat Treated Milks (살균 온도에 따른 시판 우유의 관능적 특성 비교 연구)

  • 박신인
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.1
    • /
    • pp.19-22
    • /
    • 1995
  • Sensory characteristics of various milk samples-low-temperature long-time(LTLT) milk, high-temperature short-time (HTST) milk and ultra-high temperature (UHT) milk-were investigated using chemical analysis and sensory evaluation. The chemical composition was not much different among the milk samples. The results of evaluation of preference for color, flavor, taste and overall desirability of the milk samples by scoring and ranking tests indicated that significant difference on the sensory quality was recognized at 0.01 percent level. UHT milk samples (especially sample F and H) had better sensory acceptability than LTLT milk HTST milk samples.

  • PDF

Determination of ${\alpha}-lactalbumin$ in Heated Milks by HPLC (HPLC에 의한 열처리된 우유중 ${\alpha}-lactalbumin$의 정량)

  • Kee, Hae-Jin;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.393-395
    • /
    • 1992
  • The ${\alpha}-lactalbumin({\alpha}-la)$ concentration in raw and laboratory-heated milks by HPLC was 1.20 mg/ml (unheated), 1.17 mg/ml ($63^{\circ}C$, 30min), 1.13 mg/ml ($72^{\circ}C$, 15sec) and 0 mg/ml ($100^{\circ}C$, 10min), respectively. Whereas, ${\alpha}-lactalbumin$ concentration ranges of commercial milks were $1.00{\sim}1.02\;mg/ml$ (pasteurized), $0.23{\sim}0.68\;mg/ml$ (UHT-pasteurized) and $0.77{\sim}0.89\;mg/ml$ (UHT-sterilized), respectively. It was supposed that the ${\alpha}-lactalbumin$ content of sterilized milk will be lower than that of UHT milk, but the opposite occurred. This discrepancy would be caused by the different heating system in the milk plants, where indirect UHT-treatment had more heat intensity than direct UHT-processing. The HPLC determination of ${\alpha}-lactalbumin$ may be an indicator to evaluate correctly and rapidly heated milks.

  • PDF

Effect of Homogenization Pressure on Plasmin Activity and Mechanical Stress-Induced Fat Aggregation of Commercially Sterilized Ultra High Temperature Milk during Storage

  • Kim, Sun-Chul;Yun, So-Yul;Ahn, Na-Hyun;Kim, Seong-Min;Imm, Jee-Young
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.734-745
    • /
    • 2020
  • Commercially sterilized ultra high temperature (UHT) milk was manufactured at different homogenization pressures (20, 25, and 30 MPa), and changes in fat particle size, mechanical stress-induced fat aggregation, plasmin activity, and lipid oxidation were monitored during ambient storage of the UHT milk for up to 16 wk. The particle sizes of milk fat globules were significantly decreased as homogenization pressure increased from 20 to 30 MPa (p<0.05). The presence of mechanical stress-induced fat aggregates in milk produced at 20 MPa was significantly higher than for UHT milk produced at either 25 or 30 MPa. This difference was maintained all throughout the storage. There were no significant differences in plasmin activity, trichloroacetic acid (12%, w/v) soluble peptides, and the extent of lipid oxidation. Based on these results, an increase of homogenization pressure from 20 (the typical homogenization pressure employed in the Korea dairy industry) to 25-30 MPa significantly decreased mechanical stress-induced fat aggregation without affecting susceptibility to lipid oxidation during storage.