• Title/Summary/Keyword: UHMWPe 폴리에틸렌

Search Result 46, Processing Time 0.026 seconds

Dyeing of Ultra High Molecular Weight Polyethylene Fibers with Diamino-anthraquinoid Blue Disperse Dyes Having Linear Long Alkyl Substituents (선형의 장쇄 알킬치환기를 가지는 디아미노안트라퀴논계 청색 분산염료에 의한 초고분자량 폴리에틸렌 섬유의 염색)

  • Kwak, Dong-Sup;Kim, Tae-Kyeong
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.180-188
    • /
    • 2012
  • Following the reported study that showed the dyeability of diamino-anthraquinoid blue dyes substituted with relatively shorter alkyl groups, the longer aliphatic substituents than pentyl group were examined in terms of the color strength and fastness properties toward UHMWPE fibers. The color strength was increased up to pentyl group and then gradually decreased. However, the fastness properties were improved continuously to octyl group which was the longest alkyl substituent in this study. The most effective maximum color strength was obtained at $130^{\circ}C$ for 2 hours with 3% owf of dyes. The overall fastnesses to washing, rubbing, and light were good enough for practical uses.

Performance Evaluation of Multi-Friction Dampers for Seismic Retrofitting of Structures (구조물 내진보강을 위한 다중 마찰댐퍼의 성능 평가)

  • Kim, Sung-Bae;Kwon, Hyung-O;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • This paper is a study on the friction damper, which is one of the seismic reinforcement devices for structures. This study developed a damper by replacing the internal friction material with ultra high molecular weight polyethylene (UHMWPE), a type of composite material. In addition, this study applied a multi-friction method in which the internal structure where frictional force is generated is laminated in several layers. To verify the performance of the developed multi-friction damper, this study performed a characteristic analysis test for the basic physical properties, wear characteristics, and disc springs of the material. As a result of the wear test, the mass reduction rate of UHMWPE was 0.003%, which showed the best performance among the friction materials based on composite materials. Regarding the disc spring, this study secured the design basic data from the finite element analysis and experimental test results. Moreover, to confirm the quality stability of the developed multi-friction damper, this study performed an seismic load test on the damping device and the friction force change according to the torque value. The quality performance test result showed a linear frictional force change according to the torque value adjustment. As a result of the seismic load test, the allowable error of the friction damper was less than 15%, which is the standard required by the design standards, so it satisfies the requirements for seismic reinforcement devices.

Evaluation of Friction Coefficient according to Environmental Temperature of Ultra high molecular weight polyethylene (초고분자량 폴리에틸렌의 환경온도에 따른 마찰계수 평가)

  • Lee, Jong Suk;Park, Jin Young;Lee, Bong Chun;Lee, Dong Hoon;Lee, Sang Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.257-258
    • /
    • 2018
  • PTFE(polytetrafluoroetylene) is widely used as representative sliding friction materials, but there could be difficulties in applying it to various industry fields by the shortage of carrying capacity under high facial pressure and by the change of friction coefficient according to the environmental conditions. Accordingly, this study was to do comparative analysis on the friction coefficient by environmental temperature at the same facial pressure of UHMWPE which was mainly used as sliding friction materials under high facial pressure. In addition, this study was to proceed with the double shear structure by using two test specimen in order to minimize the frictional forces.

  • PDF

Current Research on the Stress Analysis of Artificial Knee Joint (인공 슬관절의 응력 해석에 관한 연구)

  • Lee Jae-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.240-245
    • /
    • 2005
  • In this paper, the current research for the biomechanics of artificial knee joints including experiments and stress analysis is surveyed and Introduced. The knee joint is the most large and the motion is very complicated, so the design of artificial joint is difficult and most research Is being done abroad. Up to date, most products are foreign products and Imported here and the gap between here and advanced countries of the technical and capability for the design and manufacturing is too deep to follow. So, the contents of papers in this area including the most excellent results are introduced. And the preliminary research on the contact stress analysis of the joints is present.

  • PDF

Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

A Study on the Preparation of Battery Separator for Polyethylene/Potassium Hexatitanate Whisker (폴리에틸렌/육티탄산칼륨 휘스커 복합재료에 의한 축전지격리막의 제조에 관한 연구)

  • Lee, Wan-Jin;Ko, Man-Seok;Choi, Byung-Ryul;Cho, Il-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.193-199
    • /
    • 1998
  • The mixtures of ultra-high molecular weight polythylene (UHMWPE), high density polyethylene (HDPE), process oil (mineral oil) and potassium hexatitanate whisker were melted and mixed at $150^{\circ}C$ for 30min, and prepared by compression molding to the specimen of separator of about $200{\mu}m$ thickness at the same temperature and 5000 psi. Thereafter the pores were formed by extracting process oil with organic solvents. In this study, the range of PR (the ratio polymer to process oil) was varied from 0.1 to 0.5 because the specimen turned into rubbery phase at which PR was below 0.1 whereas it changed into gel phase at which PR was above 0.5. When the specimen was treated with nonpolar organic solvents, process oil was extracted nearly 98%. Tensile strength was $31kg/cm^2$ at PR = 0.426, and resistance of specimen was $37m{\Omega}/cm^2$ at PR = 0.186, and $53m{\Omega}/cm^2$ at PR = 0.426. The $N_2$ adsorption-desorption isotherm showed a hysteresis representing regions of capillary condensation, and the surface area at PR = 0.186 was relatively large as $130cm^2/g$. Potassium hexatitanate whisker was randomly dispersed in between PE layers. It might be that the whisker is intercalated through the PE thin layers oriented by compression.

  • PDF

고체원소 이온주입 공정으로 제조된 NbN 박막의 내마모 특성 평가

  • Park, Won-Ung;Choe, Jin-Yeong;Jeon, Jun-Hong;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.62-62
    • /
    • 2010
  • 인공관절은 노인성 질환이나 자가 면역질환, 신체적인 외상 등에 의한 관절의 손상 부위를 대체하기 위해 고안된 관절의 인공대용물로써 최근 인구의 고령화와 질병, 사고의 증가에 따라 그 수요가 급격히 증가하는 추세를 보이고 있다. 인공관절의 소재로는 현재 metal-on-polymer(MOP) 소재가 가장 많이 사용되고 있는데, metal 소재로서는 Co-Cr계 합금이, polymer 소재로서는 초고분자량 폴리에틸렌 (ultra high molecular weight polyethylene) 이 주로 사용되고 있다. MOP 소재의 경우 충격흡수의 장점이 있는 반면 wear debris에 의한 골용해로 인해 관절이 느슨해지는 문제점이 발생하여 재시술의 주요 원인이 되고 있다. 또한 metal 소재로 주로 사용되고 있는 Co-Cr계 합금의 경우 인공관절의 마모, 부식 현상에 의해 Co, Cr등이 체내에 용출되어 세포독성의 문제를 일으킬 수 있다는 단점을 가지고 있다. 본 연구에서는 고체원소 이온주입 기술을 이용하여 316L stainless steel 기판에 niobium을 이온 주입 한 후 niobium nitride (NbN) 박막을 증착하여 counterpart 소재인 초고분자량 폴리에틸렌(UHMWPE) 의 마모를 줄이는 실험을 진행하였다. Pin-on-disk tribometer를 통해 마모 테스트를 진행하여 NbN 박막의 내마모특성을 평가하였으며, 박막의 결정구조 및 화학적 특성을 평가하기 위해 XRD, AES 분석을 수행하였다. 또한 박막의 경도와 표면조도를 측정하기 위해 micro hardness tester, AFM을 이용하였다.

  • PDF

Characteristics of High Strength Polyethylene Tape Yarns and Their Composites by Solid State Processing Methods (고상공정법에 의한 고강도 폴리에틸렌 테이프사와 그 복합재료의 특성)

  • Lee, Seung-Goo;Cho, Whan;Joo, Yong-Rak;Song, Jae-Kyung;Joo, Chang-Whan
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 1999
  • The manufacture of high strength polyethylene(HSPE) tape yarns has been accomplished by a solid state processing(SSP) method as the compaction of ultra-high molecular weight polyethylene(UHMWPE) powders and drawing of the compacted film under the melting point without any organic solvents. In this study, the characteristics of HSPE tape yarns produced by SSP which is desirable for production cost and environmental aspect were analyzed. As the results, tensile strengths of HSPE tape yarns increased with increasing the draw ratio and the fracture morphology of highly drawn HSPE tape yarns showed more fibrillar shape than the low drawn one. Interfacial shear strengths of HSPE tape yarns with vinylester resin increased by $O_2$ plasma treatment and maximum interfacial shear strength was obtained in the plasma treatment condition of 100W and 5min. In addition, mechanical properties of HSPE tape yarn reinforced composites were investigated and compared with those of the gel spun HSPE fiber reinforced composites.

  • PDF