• Title/Summary/Keyword: UHECRs

Search Result 12, Processing Time 0.019 seconds

STRONG INFLUENCE OF THE GALACTIC MAGNETIC FIELD ON THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS

  • KIM, JIHYUN;KIM, HANG BAE;RYU, DONGSU
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.549-552
    • /
    • 2015
  • The galactic magnetic field (GMF) and the intergalactic magnetic field (IGMF) affect the propagation of ultra-high energy cosmic rays (UHECRs) from the source to us. Here we examine the influences of the GMF/IGFM and the dependence of their sky distribution on galactic latitude, b. We analyze the correlation between the arrival direction (AD) of UHECRs observed by the Pierre Auger Observatory and the large-scale structure of the universe in regions of sky divided by b. Specifically, we compare the AD distribution of observed UHECRs to that of mock UHECRs generated from a source model constructed with active galactic nuclei. Our source model has the smearing angle as a free parameter that reflects the deflection angle of UHECRs from the source. The results show that larger smearing angles are required for the observed distribution of UHECRs in lower galactic latitude regions. We obtain, for instance, a $1{\sigma}$ credible interval for smearing angle of $0^{\circ}{\leq}{\theta}_s{\leq}72^{\circ}$ at high galactic latitudes, $60^{\circ}$ < $\left|{b}\right|{\leq}90^{\circ}$, and of $75^{\circ}{\leq}{\theta}_s{\leq}180^{\circ}$, $-30^{\circ}{\leq}b{\leq}30^{\circ}$, at low galactic latitudes, respectively. The results show that the influence of the GMF is stronger than that of the IGMF. In addition, we can estimate the strength of GMFs by these values; if we assume that UHECRs would have heavier nuclei, the estimated strengths of GMF are consistent with the observational value of a few ${\mu}G$. More data from the future experiments may make UHECR astronomy possible.

Deflection of Ultra-high Energy Cosmic Rays by the Galactic Magnetic Field

  • Kim, Jihyun;Kim, Hang Bae;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2014
  • We investigate the influence of the galactic magnetic field (GMF) on the arrival direction (AD) of ultra-high energy cosmic rays (UHECRs) by searching the correlation with the large-scale structure (LSS) of the universe. The deflection angle of UHECRs from sources by the GMF is reflected in a source model by introducing the Gaussian smearing angle as a free parameter. Assuming the deflections by the GMF are mainly dependent on the galactic latitude, b, we divide the regions of sky by b and analyze the correlation between the AD of UHECRs and the LSS of the universe in each region varying the smearing angle. We find the deflection is strongly dependent on the galactic latitude by the maximum likelihood estimation. Specifically, the best-fit smearing angles are $9^{\circ}$ and $84^{\circ}$ in the high galactic latitude (HGL), $-90^{\circ}$ < b < $-60^{\circ}$, and in the low galactic latitude (LGL), $-30^{\circ}$ < b < $30^{\circ}$, respectively. The strength of GMF becomes stronger from the HGL to the LGL. From the results, we can estimate the strength of GMF in each region. In the LGL, for example, if we assume UHECRs are protons, we have the order of $100{\mu}G$ GMF, which is much stronger than the expected value of conventional GMF model. However, if the primaries are heavy nuclei, which is consistent with the observational result of mass composition analysis, the order of GMF strength is a few ${\mu}G$. More data from the future experiments make it possible to study the GMF between the source of UHECRs and Earth more accurately.

  • PDF

FR-II radio jets and the acceleration of UHECRs

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.39.2-39.2
    • /
    • 2021
  • To investigate the acceleration of ultra-high energy cosmic rays (UHECRs) in relativistic jets of FR-II galaxies, we simulate high-power jets with jet powers of Q~10^46erg/s in a stratified galaxy cluster halo using a state-of-art relativistic hydrodynamic (RHD) code we have recently developed. With the simulated jet-induced flow profiles, we then perform Monte-Carlo simulations, where the transport of high-energy particles is followed assuming large-angle scatterings in the flow-rest frame. We estimate the energy gains and acceleration times in the acceleration processes by shocks, shear, and turbulence. We present the results and discuss implications on the acceleration of UHECRs in FR II radio jets.

  • PDF

Influence of the Galactic Magnetic Field on the Distribution of Ultra-high-Energy Cosmic Rays

  • Kim, Jihyun;Kim, Hang Bae;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.38.3-38.3
    • /
    • 2015
  • Recently, the Pierre Auger Observatory (PAO), the largest ground-based project for detecting ultra-high-energy cosmic rays (UHECRs), published their 10-year data. We can access an unprecedented number of UHECR data observed by the project, which give us a possibility to get an accurate statistical test result. In this work, we investigate the influence of the galactic magnetic field (GMF) on the distribution of UHECRs by searching the correlation with the large-scale structure (LSS) of the universe. We simulate the mock UHECR events whose trajectories from the sources would be deflected by the Gaussian smearing angle which reflects the influence by the GMF. By the statistical test, we compare the correlation between the expected/observed distribution of UHECRs and the LSS of the universe in the regions of sky divided by the galactic latitude, varying the smearing angle. Here, we assume the deflections by the GMF are mainly dependent on the galactic latitude. Using the maximum likelihood estimation, we find the best-fit smearing angle in each region. If we get a trend that best-fit smearing angles differ from each region, the influence of GMF may be stronger than that of intergalactic magnetic fields (IGMF) because it is known that the distribution of IGMF follows the LSS of the universe. Also, we can estimate the strength of the GMF using the best-fit parameter by the maximum likelihood.

  • PDF

A comparison study of CORSIKA and COSMOS simulations for extensive air showers

  • Kim, Ji-Hee;Roh, Soon-Young;Ryu, Dong-Su;Kang, Hye-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2012
  • Monte Carlo codes for extensive air shower (EAS) simulate the development of EASs initiated in the Earth's atmosphere by ultra-high energy cosmic rays (UHECRs) with energy exceeding - $10^{18}$ eV. Here, we compare EAS simulations with two different codes, CORSIKA and COSMOS, presenting quantities including the longitudinal distribution of particles, depth of shower maximum, kinetic energy distribution of particle at the ground, and calorimetric energy. In addition, the lateral distribution of local energy density far from the EAS core has been known as an important quantity to estimate the energy of UHECRs. We also present the lateral distribution function obtained from GEANT4 simulations for detector response.

  • PDF

Study of Extensive air shower simulation

  • Roh, Soon-Young;Kim, Ji-Hee;Ryu, Dong-Su;Kang, Hye-Sung;Kasahara, Katuaki;Kido, Eiji;Taketa, Akimichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2010
  • Cosmic rays with energy exceeding 10^18eV are referred to as Ultra high energy cosmic rays (UHECRs). UHECR experiments have utilized air shower simulations to estimate the properties of cosmic rays. Telescope array (TA) experiment has used COSMOS and CORSIKA mainly; the Monte Carlo codes of CORSIKA and COSMOS simulate the evolution of extensive air showers in the atmosphere initiated by photons, hadrons or nuclei UHECRs. We compare the simulations from CORSIKA and COSMOS. Comparison has shown noticeable differences at the ground distributions, longitudinal distributions, Calorimetric energy, and Xmax value. The implications of our results are discussed.

  • PDF

Energy spectrum of particles arriving at the ground and S(800) determination by Monte Carlo simulation for Telescope Array

  • Kim, Ji-Hee;Roh, Soon-Young;Ryu, Dong-Su;Kang, Hye-Sung;Kasahara, Katuaki;Kido, Eiji;Taketa, Akimichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • Telescope Array (TA) experiment in Utah, USA, observes ultrahigh-energy cosmic rays (UHECRs); UHECRs refer cosmic rays with energy above $10^{18}eV$. Using COSMOS and CORSIKA, we have produced a library of over 1000 thinned extensive air shower (EAS) simulations with the primary energies ranging from $10^{18.5}eV$ to $10^{20.25}eV$ and the zenith angle of primary cosmic ray particle from $0^{\circ}$ to $45^{\circ}$. Here, we present the energy spectrum of particles arriving at the ground. We have also calculated the detector response evaluated using GEANT4 simulations. Here, we discuss S(800), i.e. the signal at a distance of 800 m from the shower core, as the primary energy estimator.

  • PDF

MAGNETIC FIELD IN THE LOCAL UNIVERSE AND THE PROPAGATION OF UHECRS

  • DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.427-431
    • /
    • 2004
  • We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.

ULTRA HIGH ENERGY COSMIC RAYS AND CLUSTERS

  • JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.421-426
    • /
    • 2004
  • I briefly review the current theoretical status of the origins of ultrahigh energy cosmic rays with special emphasis on models associated with galaxy clusters. Some basic constraints on models are laid out, including those that apply both to so-called 'top-down' and 'bottom-up' models. The origins of these UHECRs remain an enigma; no model stands out as a clear favorite. Large scale structure formation shocks, while very attractive conceptually in this context, are unlikely to be able to accelerate particles to energies much above $10^{18}eV$. Terminal shocks in relativistic AGN jets seem to be more viable candidates physically, but suffer from their rarity in the local universe. Several other, representative, models are outlined for comparison.

Ultra-high-energy cosmic rays and filaments of galaxies in the northern sky

  • Kim, Jihyun;Ryu, Dongsu;Kim, Suk;Rey, Soo-Chang;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.36.3-36.3
    • /
    • 2017
  • The Telescope Array (TA) experiment reported the arrival direction distribution of ultra-high-energy cosmic rays (UHECRs) with energies above $5.7{\times}10^{19}eV$ in the northern sky. A clustering of TA events, the so-called hotspot, was found; however, its nature has not yet been understood. To understand the origin of the TA hotspot, we examine the sky distributions of the TA UHECR arrival direction and filamentary structures of galaxies in the local universe. By statistical tests for anisotropy, we find a close correlation of the TA events with the filaments of galaxies connected to the Virgo cluster. We discuss our finding and its implications.

  • PDF