• 제목/요약/키워드: UFG(ultra-fine grained) steel

검색결과 6건 처리시간 0.02초

초기 소성변형이 초미세 결정립 페라이트-마르텐사이트 이상조직 탄소강의 건식 미끄럼마멸 특성에 미치는 영향 (Effect of Prior Deformation on the Sliding Wear of Ultra-fine Grained Ferrite-Martensite Dual Phase Steel)

  • 박준기;이슬기;신동혁;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.521-524
    • /
    • 2008
  • Effect of prior deformation on the sliding wear of the ultra-fine grained (UFG) ferrite-martensite dual phase (DP) steel was investigated. The UFG DP steel was fabricated by the ECAP and subsequent intercritical annealing. The steel was cold rolled before the wear test, and the effect of the prior deformation on the wear was examined. The wear tests were carried out at various loads against a bearing steel ball. The wear rate of the UFG DP steel that did not experience the prior deformation was higher than that of the coarse-grained (CG) DP steel, because of more severe surface shear deformation. The wear rate of the specimens with prior deformation was much higher than that of the specimen without prior deformation. The deformed CG DP specimen showed higher rate than the deformed UFG DP specimen, and the rate-variation of the CG DP steel was much bigger under the same test condition.

  • PDF

결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구 (Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load)

  • 유현석;이슬기;신동혁;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

경정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸기구 (Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as a Function of Applied Load)

  • 유현석;이슬기;신동혁;김용석
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.299-303
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained(UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

DEVELOPMENT OF HYPER INTERFACIAL BONDING TECHNIQUE FOR ULTRA-FONE GRAINED STEELS

  • Kazutoshi Nishimoto;Kazuyoshi Saida;Jeong, Bo-young;Kohriyama, Shin-ichi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.776-780
    • /
    • 2002
  • This paper describes the concept and the characteristics of hyper interfacial bonding developed as a new concept joining process for UFG (ultra-fine grained) steel. Hyper interfacial bonding process is characterized by instantaneous surface melting bonding which involves a series of steps, namely, surface heating by high frequency induction, the rapid removing of heating coil and joining by pressing specimens. UFG steels used in this study have the average grain size of 1.25 ${\mu}{\textrm}{m}$. The surface of specimen can be rapidly heated up and melted within 0.2s. Temperature gradient near heated surface is relatively steep, and peak temperature drastically fell down to about 1100K at the depth of 2~3mm away from the heated surface of specimen. Bainite is observed near bond interface, and also M-A (martensite-austenite) islands are observed in HAZ. Grain size increases with increasing heating power, however, the grain size in bonded zone can be restrained under 11 ${\mu}{\textrm}{m}$. Hardened zone is limited to near bond interface, and the maximum hardness is Hv350~Hv390.

  • PDF

하이브리드 용접과 레이저 용접에 의한 세립강 용접부의 미세조직변화에 관한 연구 (Microstructure Evolution of UFG Steel Weld by Hybrid and Laser Welding)

  • 동현우;이목영;안용식
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.58-63
    • /
    • 2010
  • A laser beam welding and an electric arc welding were combined, and the positive points of each welding method are drawn such as high speed, low thermal load, deep penetration, and high productivity. The fiber laser-MIG conjugated welding. namely the hybrid welding has been studied mainly for the automation industry of a pipeline welding. In this study, the MIG welding was combined with a fiber laser welding to make up the hybrid welding. The weld shapes, microstructures and mechanical properties for weld zones after the hybrid welding or only fiber laser welding were investigated on the 700 MPa grade Ultra Fine Grained(UFG) high strength steel. The amount of acicular ferrite in weld metals and HAZ(heat affected zone) was observed larger after hybrid welding compared with after only laser welding. The Vickers hardness of the top area of the fusion zone after fiber laser welding was higher compared with after hybrid welding.

하이브리드 용접에 의한 세립강 용접부의 기계적 성질에 관한 연구 (Mechanical Property of Ultra Fine Grained Steel Weld by Hybrid Welding)

  • 동현우;안용식
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.45-50
    • /
    • 2011
  • The effect of Mn and Ti contents in filler wire on the microstructure and mechanical property of weld metal has been investigated after hybrid welding with ultra fine grained (UFG) steel. The microstructure and distribution of alloy compositions at the top region of weld zone were quite different with those at the bottom region after hybrid welding. The bottom region of weld zone contained higher Mn and Ti contents, and consequently the hardness of bottom region was higher than that of top region. With the increase of Mn and Ti contents in filler wire, the volume percent of acicular ferrite in weld metal decreased, and the weld zone showed higher hardness and better impact property.