• Title/Summary/Keyword: UF resin

Search Result 60, Processing Time 0.025 seconds

Micro-morphological Features of Liquid Urea-Formaldehyde Resins during Curing Process at Different Levels of Hardener and Curing Time Assessed by Transmission Electron Microscopy

  • Nuryawan, Arif;Park, Byung-Dae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • This study used transmission electron microscopy (TEM) to investigate the micro-morphological features of two formaldehyde to urea (F/U) mole ratio liquid urea-formaldehyde (UF) resins with three hardener levels as a function of the curing time. The micro-morphological features of the liquid UF resins were characterized after different curing times. As a result, the TEM examination revealed the presence of globular/nodular structures in both liquid UF resins, while spherical particles were only visible in the low F/U mole ratio resins. The high F/U mole ratio liquid UF resins also showed extensive particle coalescence after adding the hardener, along with the appearance of complex filamentous networks. When the resins were cured with a higher amount of hardener and longer curing time, the spherical particles disappeared. For the low mole UF resins, the particles tended to coalesce with a higher amount of hardener and longer curing time, although discrete spherical particles were still observed in some regions. This is the first report on the distinct features of the crystal structures in low F/U mole ratio UF resins cured with 5% hardener and after 0.5 h of curing time. In conclusion, the present results indicate that the crystal structures of low F/U mole ratio UF resins are formed during the curing process.

MORPHOLOGICAL PATTERNS OF SELF-ETCHING PRIMERS AND SELF-ETCHING ADHESIVE BONDED TO TOOTH STRUCTURE (치질에 접착된 자가 산부식 프라이머와 자가 산부식 접착제의 형태학적 양상)

  • Cho, Young-Gon;Lee, Seok-Jong;Jeong, Jin-Ho;Lee, Young-Gon;Kim, Soo-Mee
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.1
    • /
    • pp.23-33
    • /
    • 2003
  • The purpose of this study was to compare in vitro interfacial relationship of restorations bonded with three self-etching primer adhesives and one self-etching adhesive. Class I cavity preparations were prepared on twenty extracted human molars. Prepared teeth were divided into four groups and restored with four adhesives and composites Clearfil SE $Bond/Clearfil^{TM}$ AP-X (SE), UniFil $Bond/UniFil^{\circledR}$ F (UF), FL $Bond/Filtek^{TM}$ Z 250 (FL) and Prompt $L-Pop/Filtek^{TM}$ Z 250 (LP) After storing in distilled water of room temperature for 24 hours, the specimens were vertically sectioned and decalcified. Morphological patterns between the enamel/dentin and adhesives were observed under SEM. The results of this study were as follows : 1. They showed close adaptation between enamel and SE, UF and FL except for LP. 2. The hybrid layer in dentin was $2{\;}\mu\textrm{m}$ thick in SE, $1.5{\;}\mu\textrm{m}$ thick in UF, and $0.4{\;}\mu\textrm{m}$ in both FL and LP. So, the hybrid layers of SE and UF were slightly thicker than that of FL and LP. 3. The lengths and diameters of resin tags in UF and FL were similar, but those of LP were slightly shorter and slenderer than those of SE. 4. The resin tags were long rod shape in SE, and funnel shape in other groups Within the limitations of this study, it was concluded that self-etching primer adhesives showed close adaptation on enamel. In addition, the thickness of hybrid layer ranged from $0.4-1.5{\;}\mu\textrm{m}$ between adhesives and dentin. The resin tags were long rod or funnel shape, and dimension of them was similar or different among adhesives.

Examination of Formaldehyde Emissions from the Hot-Pressing of Particleboard (파티클보드의 열압으로부터 포름알데히드 배출량 조사)

  • Oh, Yong-Sung;Kwak, Jun-Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.33-39
    • /
    • 2001
  • Laboratory particleboards (PBs) were made with urea-formaldehyde (UF) resins at four press times and two resin application rates. Enclosed caul system was used for collecting the exhaust gases materials generated during the hot-pressing of PB. Exhaust gases materials generated inside the enclosed caul during the hot-pressing of PB were collected in a controlled air stream. Formaldehyde from the exhaust gases collected was determined per a chromotropic method of the National Institute of Occupational Safety and Health Method 3500. The test results showed that formaldehyde emissions during the hot-pressing of PB increased with increasing press time, UF resin mole ratio, and resin application rate.

  • PDF

막분리(NF, UF)를 이용한 자연유기물(NOM) 제거에 관한 연구(II) - NF, UF 운전특성과 HAA생성능 제거 -

  • Song, Yang-Seok;Park, Yong-Hun;Jo, Yeong-Gwan;Jo, Jae-Won;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.334-338
    • /
    • 2003
  • In this study, We evaluated the removal efficiency of natural organic matters(NOM) in the Ultrafiltration(UF) and Nanofiltration(NF) membranes with molecular weight cutoff of 2500(GH), 8000(GM) and 250(HL), respectively. Filtration type was cross-flow filtration. The investigation result about raw water structure was hydrophobic 28%, hydrophilic 53% and transphilic 19%, in conjunction with XAD8/4 resin fractionation method. We were compared with UF(GM, GH) and NF(HL), in operation characteristic. In spite of poor MWCO, GM(8000Da) was superior than GH(2500Da), in the efficiency of total operation. It was showed the NF(HL) 80%, UF(GM) 50%, in the removing efficiency of HAAFP.

  • PDF

Reduction of Formaldehyde Emission from Particleboardsby Bio-Scavengers

  • Eom, Young-Geun;Kim, Jong-Sung;Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.29-41
    • /
    • 2006
  • This study was to investigate the effect of adding additive as tannin, rice husk and charcoal, for reducing the formaldehyde emission level, on the adhesion properties of urea-formaldehyde (UF) resin for particleboard. We controlled the hot-pressing time, temperature and pressure to determine the bonding strength and formaldehyde emission. Blends of various UF resin/additives (tannin, rice husk and charcoal) compositions were prepared. To determine and compare the effect of additives (tannin, rice husk and charcoal) content, 0, 5, 10 and 15%, by weight of UF resin, were used. $NH_4Cl$ as hardener added. To determine the level of formaldehyde emission, we used the desiccator, perforator and 20 L-small chamber method. The formaldehyde emission level decreased with increased additions of additive (except rice husk). Also, increased hot-pressing time decreased formaldehyde emission level. At a charcoal replacement ratio of only 15%, the formaldehyde emission level is under F ✩ ✩ ✩ ✩ grade (emit < $0.3mg/{\ell}$). Curing of the high tannin additive content in this adhesive system indicated that the bonding strength increased. But, in the case of rice husk and charcoal, the bonding strength was much lower due to the inorganic substance. Furthermore, rice husk was poor in bonding strength as well as formaldehyde emission than tannin and charcoal.

Development of the ultra/nano filtration system for textile industry wastewater treatment

  • Rashidi, Hamidreza;Sulaiman, Nik Meriam Nik;Hashim, Nur Awanis;Bradford, Lori;Asgharnejad, Hashem;Larijani, Maryam Madani
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.333-344
    • /
    • 2020
  • Advances in industrial development and waste management over several decades have reduced many of the impacts that previously affected ecosystems, however, there are still processes which discharge hazardous materials into environments. Among industries that produce industrial wastewaters, textile manufacturing processes play a noticeable role. This study was conducted to test a novel continuous combined commercial membrane treatment using polyvinylidene fluoride (PVDF), ultrafiltration (UF), and polyamide (PA) nanofiltration (NF) membranes for textile wastewater treatment. The synthetic textile wastewater used in this study contained sodium silicate, wax, and five various reactive dyes. The results indicate that the removal efficiency for physical particles (wax and resin) was 95% through the UF membrane under optimum conditions. Applying UF and NF hybrid treatment resulted in total effective removal of dye from all synthetic samples. The efficiency of sodium silicate removal was measured to be between 2.5 to 4.5% and 13 to 16% for UF and NF, respectively. The chemical oxygen demand in all samples was reduced by more than 85% after treatment by NF.

Performance of Urea-Formaldehyde Resins Synthesized at Two Different Low Molar Ratios with Different Numbers of Urea Addition

  • Jeong, Bora;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.221-228
    • /
    • 2019
  • This study reports the performance of urea-formaldehyde (UF) resins prepared at two different low formaldehyde/urea (F/U) mole ratios with different numbers of urea addition during synthesis. The second or third urea was added during the synthesis of UF resins to obtain two different low molar ratios of 0.7 and 1.0, respectively. The molecular weights, cure kinetics, and adhesion performance of these resins were characterized by the gel permeation chromatography, differential scanning calorimetry, and tensile shear strength of plywood, respectively. When the number of urea additions and F/U molar ratio increased, the gelation time decreased, whereas the viscosity and molecular weight increased. Further, the UF resins prepared with the second urea and 1.0 molar ratio resulted in greater activation energy than those with third urea and 0.7 molar ratio. Tensile shear strength and formaldehyde emission (FE) of the plywood that bonded with these resins increased when the number of urea additions and molar ratio increased. These results suggest that the UF resins prepared with 0.7 molar ratio and third urea addition provide lower adhesion performance and FE than those resins with 1.0 mole ratio and the second urea addition.

Effect of Panel Density and Resin Content on Properties of Medium Density Fiberboard

  • Hong, Min-Kug;Lubis, Muhammad Adly Rahandi;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.444-455
    • /
    • 2017
  • This study was conducted to evaluate the effect of panel density and resin content on properties of medium density fiberboard (MDF) to obtain some insights on MDF properties as a function of panel density and resin content. MDF panels with different panel densities such as 650, 700, 750 and $800kg/m^3$ were manufactured by adjusting the amount of wood fibers in the mat forming. MDF panels were also fabricated by spraying 8, 10, 12, and 14% of urea-formaldehyde (UF) resins onto wood fibers in a drum-type mechanical blender to fabricate MDF panels with a target density of $650kg/m^3$. As the panel density and resin content increased, the internal bonding (IB) strength of MDF panel consistently increased. Modulus of rupture (MOR), modulus of elasticity (MOE) and screw withdrawal resistance (SWR) had a similar trend to the IB strength. In physical properties, thickness swelling (TS) and water absorption (WA) decreased with an increase in both panel density and resin content. In addition, the formaldehyde emission (FE) which increased as the panel density and resin content became greater. In overall, the panel density of MDF had more significant effect than the resin content in all properties of MDF panels, indicating that it was better to adjust the panel density rather than the resin content for MDF manufacture.

Phenol-Formaldehyde (PF) Resin Bonded Medium Density Fiberboard

  • Park, Byung-Dae;Riedl, Bernard;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.64-71
    • /
    • 1999
  • This study was conducted to manufacture MDF panels bonded with PF resins which provide excellent durability and dimensional stability with panels, and to identify benefits and weaknesses of using PF resins for MDF panels that have been manufactured with urea-formaldehyde (UF) resins for interior applications due to its low dimensional stability under moisture conditions. The results showed that the performance of PF-bonded MDF panels satisfied the performance requirement. A six-cycle aging test also revealed that PF-bonded MDF panels had high durability. Thickness swelling after 24 hours submersion in cold water was less than 2 percent, showing good dimentioanl stability. The identified weaknesses of using PF resins were relatively high resin content and long hot-pressing time. An acceptable resin content appeared to be 8 percent which can increase the production cost of PF-bonded MDF panels. The hot-pressing time (7 minutes) used in this study is relatively long compared to that of UF-bonded MDF panels. This result also indicates that hot-pressing process has to be optimized to control various pressing variables.

  • PDF