• Title/Summary/Keyword: UF filtration

Search Result 90, Processing Time 0.022 seconds

Porous polymer membranes used for wastewater treatment

  • Melita, Larisa;Gumrah, Fevzi;Amareanu, Marin
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.147-170
    • /
    • 2014
  • This paper focuses on the study of the most recent ultra-filtration techniques, based on porous polymer membranes, used for the treatment of wastewater from oil, mine and hydrometallurgical industries. The performance of porous membranes used in separation and recovery of oil and heavy metals from wastewater, was evaluated by the polymer composition and by the membrane characteristics, as it follows: hydrophobicity or hydrophilicity, porosity, carrier (composition and concentration), selectivity, fouling, durability, separation efficiency and operating conditions. The oil/water efficient separation was observed on ultra-filtration (UF) techniques, with porous membranes, whereas heavy metals recovery from wastewater was observed using porous membranes with carrier. It can be concluded, that in the ultra-filtration wastewater treatments, a hybrid system, with porous polymer membranes with or without carrier, can be used for these two applications: oil/water separation and heavy metals recovery.

연속공정에 의한 UF용 폴리이미드 분리막의 제조

  • 김완주;전종영;탁태문
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.45-45
    • /
    • 1995
  • Filtration, one of the most important process in the various industrials, is defined as the separation of two or more compounds from a fluid by passing the mixture refers to the separation of solid, immisible particles from liquid or gaseous mixture. Membrane filtration which is a type of filtration extends it's application further to include the separation, concentration, and filtration. The main objective of this investigation is the preparation of organic solvents-resistant polyimide membranes by using phase inversion technique and their application as a UF membrane. Specially, the dope solution was prepared from the newly developed method. The newly developed method is that the dope solution was directly prepared from the polyimide solution which was prepared by the modified one-step polymerization. The effects of the parameters for membrane preparation such as the casting solution composition and the casting conditions were investigated and the performance and chemical stabfiity of membrane are going to be tested.

  • PDF

Development of the ultra/nano filtration system for textile industry wastewater treatment

  • Rashidi, Hamidreza;Sulaiman, Nik Meriam Nik;Hashim, Nur Awanis;Bradford, Lori;Asgharnejad, Hashem;Larijani, Maryam Madani
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.333-344
    • /
    • 2020
  • Advances in industrial development and waste management over several decades have reduced many of the impacts that previously affected ecosystems, however, there are still processes which discharge hazardous materials into environments. Among industries that produce industrial wastewaters, textile manufacturing processes play a noticeable role. This study was conducted to test a novel continuous combined commercial membrane treatment using polyvinylidene fluoride (PVDF), ultrafiltration (UF), and polyamide (PA) nanofiltration (NF) membranes for textile wastewater treatment. The synthetic textile wastewater used in this study contained sodium silicate, wax, and five various reactive dyes. The results indicate that the removal efficiency for physical particles (wax and resin) was 95% through the UF membrane under optimum conditions. Applying UF and NF hybrid treatment resulted in total effective removal of dye from all synthetic samples. The efficiency of sodium silicate removal was measured to be between 2.5 to 4.5% and 13 to 16% for UF and NF, respectively. The chemical oxygen demand in all samples was reduced by more than 85% after treatment by NF.

Characteristics of Food Waste Leachate Treatment in Thermophilic two Stage Anaerobic Digestion Combined UF Membrane (막결합형 고온 이상 혐기성 소화공정에서 음폐수 처리 특성)

  • Kim, Young-O;Jun, Duk-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.21-24
    • /
    • 2012
  • In this study, Anaerobic Membrane Bioreactor(AnMBR) treating food waste leachate was operated to investigate treatment efficiency of anaerobic process, operational parameters and production of biogas. AnMBR was operated under the condition of filtration type of inside-out mode. AnMBR was operated under the condition that range of permeate flux was from 15 to 20 LMH and range of transmembrane pressure was from 1 to $3 kgf/cm^2$. It was not good that AnMBR was performed under direct connection between anaerobic reactor and external UF module. so, this connection method changed to indirect connection using buffer tank was placed between anaerobic reactor and UF external module. TCOD and SCOD values were that influent were about 113 g/L, 62 g/L and effluent were 25 g/L, 12 g/L, respectively. also TCOD and SCOD removal efficiency were 77% and 81%, respectively. but after added UF process, COD and SCOD removal efficiency was increased to 93% and 86%, respectively.

Use of laminar flow water storage tank (LFWS) to mitigate the membrane fouling for reuse of wastewater from wafer processes

  • Sun, Darren Delai;Wu, You
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • This study employed the modified fouling index (MFI) to determine the performance of a two-step recycling system - a membrane filtration integrated laminar flow water storage (LFWS) tank followed by an ion exchange process to reclaim ultrapure water (UPW) from the wastewater generated from semiconductor wafer backgrinding and sawing processes. The first step consisted of the utilization of either ultrafiltration (UF) or nanofiltration (NF) membranes to remove solids in the wastewater where the second step consisted of an ion exchanger to further purify the filtrate. The system was able to produce high purity water in a continuous operating mode. However, higher recycling cost could be incurred due to membrane fouling. The feed wastewater used for this study contained high concentration of fine particles with low organic and ionic contents, hence membrane fouling was mainly attributed to particulate deposition and cake formation. Based on the MFI results, a LFWS tank that was equipped with a turbulence reducer with a pair of auto-valves was developed and found effective in minimizing fouling by discharging concentrated wastewater prior to any membrane filtration. By comparing flux behaviors of the improved system with the conventional system, the former maintained a high flux than the latter at the end of the experiment.

Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal

  • Basri, H.;Ismail, A.F.;Aziz, M.
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.25-37
    • /
    • 2011
  • PES UF membranes containing silver were prepared to impart antibacterial properties for waste water treatment. Asymmetric membranes for antibacterial application were prepared from polyethersulfone (PES) and silver nitrate ($AgNO_3$) (PES/$AgNO_3$=15/2 by weight) solution in N-Methyl-2-pyrrolidone (NMP) via simple wet phase inversion technique. These membranes were characterized by polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) of different molecular weights (1000 ppm in water) at room temperature and on operating pressure of 5 bars. It was observed that the water flux of PES-$AgNO_3$ membrane is slightly lower than virgin PES but still increased linearly with the increment of pressure applied. The morphology of the resulting membranes was examined using Field-Emission Scanning Electron Microscope (FESEM) coupled with Energy Dispersive Spectroscopy (EDS). Elemental analysis using EDS proved that silver is successfully loaded on the membrane surfaces. Due to the success of loading silver on membrane surfaces, antibacterial activities were evaluated via agar diffusion method against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) culture. By incorporating 2 wt% of silver nitrate, PES-$AgNO_3$ showed significant inhibition ring on both E.coli and S.aureus. Filtration of E.coli solution (OD 0.31) showed satisfactory rejection data with ~100% inhibition growth after 24 hours incubation at $37^{\circ}C$. Resultant membranes also exhibit better tensile strength (compared to virgin PES) up to 71% may be due to the suggested interactions. The residual silver during fabrication was measured using ICP-MS and result showed that the residual silver content of PES-$AgNO_3$ membrane was only ~1% of the original silver added in the polymer solution. These studies have shown that PES-$AgNO_3$ UF membranes are potential in improving the filtration in water treatment.

Water Treatment Application of a Large Pore Micro-Filtration Membrane and Its Problems (대기공 정밀여과막의 수처리 응용 및 문제점)

  • Yun, Chang-Han;Kim, Jeong-Hak;Lee, Kang Won;Park, Sung Ho
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.194-200
    • /
    • 2014
  • The purpose of this study was to evaluate the performance of newly developed Large Pore Micro-Filtration (LPMF) membrane in Lab size for the application of water treatment, and to find its problems with solutions. The out-to-inside filtration hollow fiber LPMF membrane of which average pore size was $5{\mu}m$ was used at this study and its material was the PET braid reinforced PVDF. Filtration tests were done through gravity with 30 cm water head difference or pressure below 1.5 bar, and the backwash was done instantaneously with the filtrate after pressurizing it to about 4 bar. The water flux of the LPMF membrane with 0.2 bar TMP (Trans Membrane Pressure) was 2 times higher than $0.4{\mu}m$ MF membrane with $0.05{\mu}m$ UF filtrate of the tap water and it was measured also with 20~30 cm water head difference which showed over 800 LMH at 30 cm water head difference. And Time-To-Filter (TTF) was performed by using $5{\mu}m$ filter paper to optimize coagulants and dosage which enhanced filtrate's turbidity and stabilized filtration flux. When the LPMF was operated with 30 cm gravity with very high dose of inorganic coagulants, the flux was maintained over 80 LMH with 93.5~99.5% turbidity removal. Especially, the filtration was maintained stably in the flux and about 97% of the recovery rate by instantaneous pressurized backwash with about 4 bar of the filtrate when the packing density was about 19%. But there was instability in filtration, since the TMP was continuously going up by inefficient backwash when the packing density was 43%.

Evaluation of Seawater Reverse Osmosis Desalination System with UF and Disk Filter as Pre-Treatment (UF와 디스크필터를 전처리시설로 이용한 역삼투압해수담수설비의 평가)

  • Yang, Keun-Mo;Lim, Dong-Hoon;Kim, Joon Ha;Jung, Hyung-Ho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • In the present study, sea water reverse osmosis desalination system was composed with an ultra-filtration membrane as a pre-treatment. Sea water was induced into the pre-treatment composed with an auto-screen filter and an ultra-filtration membrane. It was proved that the permeate of the pre-treatment was adequate for reverse osmosis desalination system by measuring the $SDI_{15}$ and the turbidity. Feed salinities was changed by mixing the brine and the permeate. Inlet salinities effected the performances of sea water reverse osmosis desalination system in a large amount such as the salt rejection, the recovery ratio, the pressure, the product salinity. Energy consumptions per the ton of the product were almost linearly increased with the inlet salinities.

Performance of membrane filtration in the removal of iron and manganese from Malaysia's groundwater

  • Kasim, Norherdawati;Mohammad, Abdul Wahab;Abdullah, Siti Rozaimah Sheikh
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.277-296
    • /
    • 2016
  • The aim of this research was to investigate the ability of nanofiltration (NF) and ultrafiltration (UF) membranes as a filtration unit for groundwater treatment for drinking water resources. Commercial membranes denoted as TS40, TFC-SR3 and GHSP were used to study the performance based on rejections and fluxes. The investigation has been conducted using natural groundwater obtained from a deep tube well with initial concentration of iron (Fe) and manganese (Mn) at 7.15 mg/L and 0.87 mg/L, respectively. Experimental results showed that NF membranes exhibited higher fluxes than UF membrane with pure water permeability at 4.68, 3.99 and $3.15L.m^{-2}.h^{-1}.bar^{-1}$, respectively. For metal rejection, these membranes have performed higher removal on Fe with TS40, TFC-SR3 and GHSP membranes having more than 82%, 92% and 86% respectively. Whereas, removal on Mn only achieved up to 60%, 80% and 30%, for TS40, TFC-SR3 and GHSP membranes respectively. In order to achieve drinking water standard, the membranes were efficient in removing Fe ion at 1 and 2 bar in contrast with Mn ion at 4 and 5 bar. Higher rejection of Fe and Mn were achieved when pH of feed solution was increased to more than 7 as TFC-SR3 membrane was negatively charged in basic solution. This effect could be attributed to the electrostatic effect interaction between membrane material and rejected ions. In conclusion, this study proved that NF membrane especially the TFC-SR3 membrane successfully treated local groundwater sources for public drinking water supply in line with the WHO standard.

Color Removal of the Wastewater containing the Pigml:mts using Wastewater Treatment Technologies (안료폐수의 탈색연구)

  • Lee, Byeong-Kyu;Cho, Sung-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.429-439
    • /
    • 2000
  • Various wastewater treatment technologies were applied for decolorization and disposal of the wastewater containing the pigments, which consist of Lake Red C(Barium) or/and Lithol Rubine(Calcium) pigments. In an application of ozonation $COD_{Mn}$ was generally decreased with an increase of amounts of ozone applied, however, the decolorization effect was not that good except for Lithol Rubine series. In an application of Fenton oxidation and electrochemical process, a good $COD_{Mn}$ removal effect for all the pigment wastewater and a slight decolorization effect for a part of Lithol Rubine series were observed. In an application of ultra filtration(UF) and reverse osmosis(RO), an excellent $COD_{Mn}$ removal and decolorization(almost 100%) effects of all the pigment wastewater were observed. Thus the water treated by the UF and RO could be reusable and thus save operating costs of the pigment manufacturing plants.

  • PDF