• Title/Summary/Keyword: UDP-N-acetylglucosamine

검색결과 18건 처리시간 0.026초

Altered sugar donor specificity and catalytic activity of pteridine glycosyltransferases by domain swapping or site-directed mutagenesis

  • Kim, Hye-Lim;Kim, Ae Hyun;Park, Mi Bi;Lee, Soo-Woong;Park, Young Shik
    • BMB Reports
    • /
    • 제46권1호
    • /
    • pp.37-40
    • /
    • 2013
  • CY-007 and CY-049 pteridine glycosyltransferases (PGTs) that differ in sugar donor specificity to catalyze either glucose or xylose transfer to tetrahydrobiopterin were studied here to uncover the structural determinants necessary for the specificity. The importance of the C-terminal domain and its residues 218 and 258 that are different between the two PGTs was assessed via structure-guided domain swapping or single and dual amino acid substitutions. Catalytic activity and selectivity were altered in all the mutants (2 chimeric and 6 substitution) to accept both UDP-glucose and UDP-xylose. In addition, the wild type activities were improved 1.6-4.2 fold in 4 substitution mutants and activity was observed towards another substrate UDP-N-acetylglucosamine in all the substitution mutants from CY-007 PGT. The results strongly support essential role of the C-terminal domain and the two residues for catalysis as well as sugar donor specificity, bringing insight into the structural features of the PGTs.

N-Acetyl-D-Glucosamine Kinase Is a Component of Nuclear Speckles and Paraspeckles

  • Sharif, Syeda Ridita;Lee, HyunSook;Islam, Md. Ariful;Seog, Dae-Hyun;Moon, Il Soo
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.402-408
    • /
    • 2015
  • Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.

Prenatal Diagnosis of Mucolipidosis Type II: Comparison of Biochemical and Molecular Analyses

  • Kosuga, Motomichi;Okada, Michiyo;Migita, Osuke;Tanaka, Toju;Sago, Haruhiko;Okuyama, Torayuki
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제2권1호
    • /
    • pp.19-22
    • /
    • 2016
  • Purpose: Mucolipidosis type II (ML II), also known as I-cell disease is an autosomal recessive inherited disorder of lysosomal enzyme transport caused by a deficiency of the uridine diphosphate (UDP)-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase). Clinical manifestations are skeletal abnormalities, mental retardation, cardiac disease, and respiratory complications. A severely and rapidity progressive clinical course leads to death before 10 years of age. Methods/Results: In this study we diagnosed three cases of prenatal ML II in two different at-risk families. We compared two procedures -biochemical analysis and molecular analysis - for the prenatal diagnosis of ML II. Both methods require an invasive procedure to obtain specimens for the diagnosis. Biochemical analysis requires obtaining cell cultures from amniotic fluid for more than two weeks, and would result in a late diagnosis at 19 to 22 weeks of gestation. Molecular genetic testing by direct sequence analysis is usually possible when mutations are confirmed in the proband. Molecular analysis has an advantage in that it can be performed during the first-trimester. Conclusion: Molecular diagnosis is a preferable method when a prompt decision is necessary.

Identification of a New 5'-Noncoding Exon Region and Promoter Activity in Human N-Acetylglucosaminyltransferase III Gene

  • Kang, Bong-Seok;Kim, Yeon-Jeong;Shim, Jae-Kyoung;Song, Eun-Young;Park, Young-Guk;Lee, Young-Choon;Nam, Kyung-Soo;Kim, June-Ki;Lee, Tae-Kyun;Chung, Tae-Wha;Kim, Cheorl-Ho
    • BMB Reports
    • /
    • 제31권6호
    • /
    • pp.578-584
    • /
    • 1998
  • In a previous paper (Kim et al., 1996a), the immediate 5' -flanking region and coding region of the human UDP-N -acetylglucosamine:-D-mannoside-1,4-Nacetylglucosaminyltransferase III (N-acetylglucosaminyitransferase- III; GnT-III) gene was reported, isolated and analyzed. Herein, we report on amplification of a new 5' -noncoding region of the GnT-III mRNA by single-strand ligation to single-stranded cDNA-PCR (5' -RACE PCR) using poly(A)+ RNA isolated from human fetal liver cells. A cDNA clone was obtained with 5' sequences (96 bp) that diverged seven nucleotides upstream from the ATG (+1) start codon. A concensus splice junction sequence, TCTCCCGCAG, was found immediately 5' to the position where the sequences of the cDNA diverged. The result suggested the presence of an intron in the 5' -noncoding region and that the cDNA was an incompletely reversetranscribed cDNA product derived from an mRNA containing a new noncoding exon. When mRNA expression of GnT-III in various human tissues and cancer cell lines was examined, Northern blot analysis indicated high expression levels of GnT-III in human fetal kidney and brain tissues, as well as for a number of leukemia and lymphoma cancer cell lines. Promoter activities of the 5' -flanking regions of exon 1 and the new noncoding region were measured in a human hepatoma cell line, HepG2, by luciferase assays. The 5'-flanking region of exon 1 was the most active, whilst that of exon 2 was inactive.

  • PDF

Kinetic Properties of Wild-type and C117D Mutant UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae

  • Han, Seong-Gu;Jin, Bong-Suk;Lee, Won-Kyu;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2549-2552
    • /
    • 2011
  • In this study, the kinetic properties of wild-type and C117D mutant H. influenzae MurA (Hi MurA), which catalyzes the first reaction in the biosynthetic pathway of the cell wall, were characterized. Purified recombinant Hi MurA was active at pH values ranging from pH 5.5 to pH 10, and its $K_m$ (UNAG), $K_m$ (PEP), and $k_{cat}$ values were measured to be 31 ${\mu}M$, 24 ${\mu}M$, and 210 $min^{-1}$, respectively. Hi MurA activity was effectively inhibited by fosfomycin with an $IC_{50}$ value of 60 ${\mu}M$. Hi MurA contains a cysteine residue (C117) at the loop region near the PEP binding, whereas MurA from fosfomycin resistant Mycobaterium tuberculosis or Chlamydia trachomatis contain an aspartate residue instead of the cysteine at the corresponding site. Aspartate substitution of Cys117 in Hi MurA shifted its optimum pH from 7.8 to 6.0. In addition, the $K_m$ values for UNAG and PEP were increased to 160 ${\mu}M$ and 150 ${\mu}M$, respectively, and the $k_{cat}$ value was significantly reduced to 41 $min^{-1}$. Furthermore, the C117D mutant form of Hi MurA was not inhibited by 1 mM fosfomycin. These results indicate that the Cys117 of Hi MurA is the binding site of fosfomycin and plays an important role in the fast turnover of the catalytic reaction.

Genome Characteristics of Lactobacillus fermentum Strain JDFM216 for Application as Probiotic Bacteria

  • Jang, Sung Yong;Heo, Jaeyoung;Park, Mi Ri;Song, Min-Ho;Kim, Jong Nam;Jo, Sung Ho;Jeong, Do-Youn;Lee, Hak Kyo;Kim, Younghoon;Oh, Sangnam
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1266-1271
    • /
    • 2017
  • Lactobacillus fermentum strain JDFM216, isolated from a Korean infant feces sample, possesses the ability to enhance the longevity and immune response of a Caenorhabditis elegans host. To explore the characteristics of strain JDFM216 at the genetic level, we performed whole-genome sequencing using the PacBio system. The circular draft genome has a total length of 2,076,427 bp and a total of 2,682 encoding sequences were identified. Five phylogenetically featured genes possibly related to the longevity and immune response of the host were identified in L. fermentum strain JDFM216. These genes encode UDP-N-acetylglucosamine 1-carboxyvinyltransferase (E.C. 2.5.1.7), ErfK/YbiS/YcfS/YnhG family protein, site-specific recombinase XerD, homocysteine S-methyltransferase (E.C. 2.1.1.10), and aspartate-ammonia ligase (E.C. 6.3.1.1), which are involved in peptidoglycan synthesis and amino acid metabolism in the gut environment. Our findings on the genetic background of L. fermentum strain JDFM216 and its potential candidate genes for host longevity and immune response provide new insight for the application of this strain in the food industry as newly isolated functional probiotic.

Invitro and Virtual Screening of Bioactive Molecule from Mycelium of Trichoderma atroviride Inhibit the UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine Deacetylases (LpxC) for Treatment of Bacterial Infection

  • Saravanakumar, Kandasamy;Park, Cheol-Ho;Wang, Myeong-Hyeon
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.67-67
    • /
    • 2018
  • Trichoderma species are a rich source of metabolites, but less known for biomedical potential. This work deals with antibacterial and antioxidant potentials of intracellular non-cytotoxic metabolites, extracted from Trichoderma atroviride (KNUP001). A total of 53 fractions was collected by column chromatography and tested for cytotoxicity by MTT assay. Only one fraction (F41) was found to be non-toxic to Vero cells with $95.4{\pm}0.61%$ of survival. The F41 was then subjected to chemical analysis, antibacterial and antioxidant assays. The F41 at $500{\mu}g.ml^{-1}$ showed the total antioxidant of $48.70{\pm}2.90%$, DPPH radical scavenging activity of $37.25{\pm}2.25$, nitric oxide (NO) radical scavenging activity of $54.55{\pm}1.95$ and $H_2O_2$ radical scavenging activity of $43.75{\pm}3.21$. The F41 at $25{\mu}g.ml^{-1}$ displayed antibacterial activity against E. coli ($14.25{\pm}0.2mm$), P. mirabilis ($10.4{\pm}0.6mm$), S. dysenteriae ($18.6{\pm}03mm$), S. paratyphi A ($14.1{\pm}1.1mm$), E. aerogenes ($5.6{\pm}0.4mm$) and S. marcescens ($14.25{\pm}0.2mm$). GC-MS analysis revealed the dominant presence of oleic acid C 18.1 (63.18%), n-hexadecanoic acid (6.17%), and ethyl oleate (4.93%) and potent molecules such as 8-[(2E)-2-(3-hydroxybenzylidene)hydrazinyl]-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione, 2-(Dimethylamino)ethyl (1Z)-N-hydroxy-2-(4-morpholinyl)-2-oxoethanimidothioate, Fluorene in the F41, and virtual study revealed that these molecules are likely responsible for the antibacterial activities of F41. Hence, further investigation deserves on purification and characterization of the active metabolites from T. atroviride strain KNUP001 towards developing molecular leads to effective antibacterial drugs, and non-toxic to host cells.

  • PDF

리소좀 교통 이상을 초래하는 뮤코지방증 2형과 3형 환자의 섬유아세포를 이용한 신규 유전자 탐색 및 돌연변이에 대한 연구 (A Study on the Screening of the Novel Genes Associated with Lysosomal Trafficking and Mutation Detection in Fibroblasts of the Patients with Mucolipidosis type II and III)

  • 송승미;장수희;백경훈;진동규
    • 대한유전성대사질환학회지
    • /
    • 제5권1호
    • /
    • pp.65-75
    • /
    • 2005
  • 목적: 뮤코지방증 유형 II와 III은 리소좀 효소인N-acetylglucosaminyl-1-phosphotransferase (UDP-N-acetylglucosamine, GlcNAc-phospho-transferase)의 결손에 의해 초래되며, 상염색체 열성으로 유전되는 질환이다. ${\alpha}/{\beta}/{\gamma}$ subunit로 구성되는 이 효소의 결핍으로 인해 리소좀으로 운반되는 수십 종류의 효소들에 mannose-6-phosphate(M6P)를 부착하는 과정에 장애가 생겨 분해되지 않은 물질이 축적되어 질병이 초래된다. 이 질환에 있어서 산전 진단과 유전 상담을 위해서는 상기 효소의 해당 유전자가 밝혀져 있어야 하나, 현재 이 효소의 ${\gamma}$ subunit를 암호화하는 유전자가 GNPTAG에 해당된다고 밝혀져 있을 뿐 ${\alpha}/{\beta}$ subunit을 암호화하는 GNPTA에 해당하는 유전자는 밝혀져 있지 않고 돌연변이 역시 보고된 적이 없다. 본 연구는 리소좀 효소의 인산화에 관여하는 N-acetylglucosamine-1-phospho-transferase의 결함이 있는 환자의 섬유아세포를 이용하여 리소좀 연관 신규 유전자를 찾아내고, 그 유전자를 대상으로 돌연변이를 규명하고자 하였다. 방법: 이를 위해 5명의 환자와5명의 연령, 성별이 일치하는 정상아의 섬유아세포를 계대 배양하여 이 세포를 이용하여 수행한 subtractive hybridization을 통해 신규 유전자를 탐색하고, 신규 유전자를 대상으로 돌연변이 분석을 수행하였다. 결과: 연구 결과 환자에서 발현이 증가된 유전자 73개와 발현이 감소된 유전자 50개를 밝혀냈다. 분석된 유전자 중에서 MGC4170이환자에서는 발현되지 않으나 정상인에서는 발현됨을 발견하였고, 이 유전자가 아직 밝혀지지 않은 GNPTA로 확인되어 환자를 대상으로 돌연변이 분석을 시행하였다.분석 결과 기존에 돌연변이가 보고되었던 GNPTAG에는 돌연변이가 없었으나, MGC4170에는 7개의 돌연변이가 발견되었다. 본 연구는 GlcNAc-phosphotransferase의 ${\alpha}/{\beta}$ subunit에 해당되는 MGC4170의 최초 돌연변이 보고이다. 결론: 본 연구를 통해 뮤코지방증 II형과 III형에서 발현되는 유전자 군을 파악할 수 있었으며, 동시에 MGC4170 돌연변이를 규명함으로써 이 질환의 병리 기전 연구와 산전 진단에 기여하고자 한다.

  • PDF