• Title, Summary, Keyword: UBGH2-6 시추공

Search Result 2, Processing Time 0.035 seconds

3D Spatial Distribution Modeling for Petrophysical Property of Gas Hydrate-Bearing Sediment using Well Data in Ulleung Basin (울릉분지 시추공 분석 자료를 이용한 가스하이드레이트 함유층의 3차원 공간 물성 분포 추정)

  • Lee, Dong-Gun;Shin, Hyo-Jin;Lim, Jong-Se
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.156-168
    • /
    • 2013
  • Drilling expedition #1 in 2007 and drilling expedition #2 in 2010 were performed for gas hydrate resources evaluation and optimal site selection of pilot test in Ulleung basin, East Sea, Korea. This study presents to build the 3D spatial distribution models using the estimated sedimentary facies, porosity, and gas hydrate saturation derived by well logs and core analysis data from UBGH1-4, UBGH1-9, UBGH1-10, UBGH1-14, UBGH2-2-1, UBGH2-2-2, UBGH2-6, UBGH2-9, UBGH2-10 and UBGH2-11. The objective of 3D spatial distribution modeling is to build a geological representation of the gas hydrate-bearing sediment that honors the heterogeneity in 3D grid scale. The facies modeling is populating sedimentary facies into a geological grid using sequential indicator simulation. The porosity and gas hydrate saturation modeling used sequential Gaussian simulation to populate properties stochastically into grid cells.

Seismic Attribute Analysis of the Indicators for the Occurrence of Gas Hydrate in the Northwestern Area of the Ulleung Basin, East Sea (동해 울릉분지 북서지역 가스하이드레이트 부존 지시자의 탄성파 속성 분석)

  • Kim, Kyoung Jin;Yi, Bo Yeon;Kang, Nyeon Keon;Yoo, Dong Geun;Shin, Kook Sun;Cho, Young Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.216-230
    • /
    • 2014
  • Based on the interpretation of 3D seismic profiles acquired in the northwestern area of the Ulleung Basin, East Sea, the shallow sediments consist of five seismic units separated by regional reflectors. An anticline is present in the study area that documents activity of many faults. Bottom simulating reflectors are characterized by high RMS amplitude. Acoustic blanking with low RMS amplitude is distinctively recognized in the gas hydrate stability zone. Seismic attribute analysis shows that if gas hydrates are underlain by free gas, the high reflection strength and the low instantaneous frequency are displayed below the boundary between them. Whereas, if not, the reflection strength is low and instantaneous frequency is high continuously below the gas hydrate zone. Based on the spectral decomposition of the bottom simulating reflector, the high envelope at the specific high frequency range indicates the generation of the tuning effect due to the lower free gas content. Four models for the occurrence of the gas hydrate are suggested considering the slope of sedimentary layers as well as the presence of gas hydrate or free gas.