• Title/Summary/Keyword: UAV image

Search Result 319, Processing Time 0.03 seconds

Cloud Computing-Based Processing of Large Volume UAV Images Acquired in Disaster Sites (재해/재난 현장에서 취득한 대용량 무인기 영상의 클라우드 컴퓨팅 기반 처리)

  • Han, Soohee
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1027-1036
    • /
    • 2020
  • In this study, a cloud-based processing method using Agisoft Metashape, a commercial software, and Amazon web service, a cloud computing service, is introduced and evaluated to quickly generate high-precision 3D realistic data from large volume UAV images acquired in disaster sites. Compared with on-premises method using a local computer and cloud services provided by Agisoft and Pix4D, the processes of aerial triangulation, 3D point cloud and DSM generation, mesh and texture generation, ortho-mosaic image production recorded similar time duration. The cloud method required uploading and downloading time for large volume data, but it showed a clear advantage that in situ processing was practically possible. In both the on-premises and cloud methods, there is a difference in processing time depending on the performance of the CPU and GPU, but notso much asin a performance benchmark. However, it wasfound that a laptop computer equipped with a low-performance GPU takes too much time to apply to in situ processing.

Orientation Analysis between UAV Video and Photos for 3D Measurement of Bridges (교량의 3차원 측정을 위한 UAV 비디오와 사진의 표정 분석)

  • Han, Dongyeob;Park, Jae Bong;Huh, Jungwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • UAVs (Unmanned Aerial Vehicles) are widely used for maintenance and monitoring of facilities. It is necessary to acquire a high-resolution image for evaluating the appearance state of the facility in safety inspection. In addition, it is essential to acquire the video data in order to acquire data over a wide area rapidly. In general, since video data does not include position information, it is difficult to analyze the actual size of the inspection object quantitatively. In this study, we evaluated the utilization of 3D point cloud data of bridges using a matching between video frames and reference photos. The drones were used to acquire video and photographs. And exterior orientations of the video frames were generated through feature point matching with reference photos. Experimental results showed that the accuracy of the video frame data is similar to that of the reference photos. Furthermore, the point cloud data generated by using video frames represented the shape and size of bridges with usable accuracy. If the stability of the product is verified through the matching test of various conditions in the future, it is expected that the video-based facility modeling and inspection will be effectively conducted.

A Study on the Laser Designator for the Missile System Using Semi-Active Laser Seeker (반능동 레이저 탐색기를 사용하는 유도무기체계의 레이저 조사기 연구)

  • Bae, Minji;Ha, Jaehoon;Park, Heechan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.466-474
    • /
    • 2020
  • Semi-active laser missile systems with high accuracy are necessary to asymmetric threats, such as UAV(Unmanned Aerial Vehicle). They are usually used to attack stationary or slow moving targets, therefore we should study on the laser designator which can detect and track fast moving targets in order to deal with UAV. In this study, design specifications are came up through performance analysis of existing laser designators, and laser designation method for fast moving target is developed. The detection and tracking performance of developed laser designator are verified through inside/outside tests on ground/aerial stationary/moving targets. Through this study, we obtain laser designator techniques that could be applied to actual semi-active laser missile systems.

Aerial Object Detection and Tracking based on Fusion of Vision and Lidar Sensors using Kalman Filter for UAV

  • Park, Cheonman;Lee, Seongbong;Kim, Hyeji;Lee, Dongjin
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.232-238
    • /
    • 2020
  • In this paper, we study on aerial objects detection and position estimation algorithm for the safety of UAV that flight in BVLOS. We use the vision sensor and LiDAR to detect objects. We use YOLOv2 architecture based on CNN to detect objects on a 2D image. Additionally we use a clustering method to detect objects on point cloud data acquired from LiDAR. When a single sensor used, detection rate can be degraded in a specific situation depending on the characteristics of sensor. If the result of the detection algorithm using a single sensor is absent or false, we need to complement the detection accuracy. In order to complement the accuracy of detection algorithm based on a single sensor, we use the Kalman filter. And we fused the results of a single sensor to improve detection accuracy. We estimate the 3D position of the object using the pixel position of the object and distance measured to LiDAR. We verified the performance of proposed fusion algorithm by performing the simulation using the Gazebo simulator.

Accuracy Analysis of Satellite Imagery in Road Construction Site Using UAV (도로 토목 공사 현장에서 UAV를 활용한 위성 영상 지도의 정확도 분석)

  • Shin, Seung-Min;Ban, Chang-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.753-762
    • /
    • 2021
  • Google provides mapping services using satellite imagery, this is widely used for the study. Since about 20 years ago, research and business using drones have been expanding. Pix4D is widely used to create 3D information models using drones. This study compared the distance error by comparing the result of the road construction site with the DSM data of Google Earth and Pix4 D. Through this, we tried to understand the reliability of the result of distance measurement in Google Earth. A DTM result of 3.08 cm/pixel was obtained as a result of matching with 49666 key points for each image. The length and altitude of Pix4D and Google Earth were measured and compared using the obtained PCD. As a result, the average error of the distance based on the data of Pix4D was measured to be 0.68 m, confirming that the error was relatively small. As a result of measuring the altitude of Google Earth and Pix4D and comparing them, it was confirmed that the maximum error was 83.214m, which was measured using satellite images, but the error was quite large and there was inaccuracy. Through this, it was confirmed that there are difficulties in analyzing and acquiring data at road construction sites using Google Earth, and the result was obtained that point cloud data using drones is necessary.

Application of UAV images for rainfall-induced slope stability analysis in urban areas

  • Dohyun Kim;Junyoung Ko;Jaehong Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.167-174
    • /
    • 2023
  • This study evaluated slope stability through a case study to determine the disaster risks associated with increased deforestation in structures, including schools and apartments, located in urban areas adjacent to slopes. The slope behind the ○○ High School in Gwangju, Korea, collapsed owing to heavy rain in August 2018. Historically, rainwater drained well around the slope during the rainy season. However, during the collapse, a large amount of seepage water flowed out of the slope surface and a shallow failure occurred along the saturated soil layer. To analyze the cause of the collapse, the images of the upper area of the slope, which could not be directly identified, were captured using unmanned aerial vehicles (UAVs). A digital elevation model of the slope was constructed through image analysis, making it possible to calculate the rainfall flow direction and the area, width, and length of logging areas. The change in the instability of the slope over time owing to rainfall lasting ten days before the collapse was analyzed through numerical analysis. Imaging techniques based on the UAV images were found to be effective in analyzing ground disaster risk maps in urban areas. Furthermore, the analysis was found to predict the failure before its actual occurrence.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

Determinate Real-Time Position and Attitude using GPS/INS/AT for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/INS/AT를 이용한 실시간 위치/자세 결정)

  • Han, Joong-Hee;Kwon, Jay-Hyoun;Lee, Im-Pyeong;Choi, Kyoung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.531-537
    • /
    • 2010
  • Real-time Aerial Monitoring System performs the rapid mapping in an emergency situation so that the geoinformation could be constructed in near real time. In this system, the position and attitude information from GPS/INS integration algorithm is used to perform the aerial triangulation(AT) without GCPs. Therefore, if we obtain Exterior Orientation(EO) estimates from AT sequentially, EO are used as the measurements in the Kalman filter. In this study, we simulate the GPS/IMS/Image data for an UAV-based aerial monitoring system and compare the GPS/INS/AT with and without from AT. Comparative analysis showed that result from the GPS/INS/AT with EO update is more accurate than without the update. However, when the vehicle turns, the position error significantly increases which need more analysis in the future.

Demonstration of UAS Image-Based Intellectual Demarcation in Cadastral Reexaminationy (지적재조사에서 UAS 영상 기반 지적 경계확정 시범 연구)

  • Kim, Dal-Joo;Kang, Joon-Oh;Han, Woong-ji;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.7 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • The cadastral rehabilitation project, which has been implemented since 2012, is a project to re-examine the national land that is not in conformity with the cadastral map, There is a lot of trouble in securing financial resources for business execution. This study examines the utility of UAS(Unmanned Aerial System) image - based cadastral demarcation as an alternative to budget reduction in the current state of cadastral rehabilitation, reasonable boundary adjustment, UAV(Unmanned Aerial Vehicles) is used to create 3D models and orthoimages of business districts, and to check accuracy by superimposing and comparing with digital maps of NGII(National Geographic Information Institute). As a result of the study, the accuracy of the 3D model and the orthoimage through the SfM(Structure-from-Motion) - based image interpretation of the digital map of the NGII were derived. In particular, we confirmed the similarity of UAS-based orthoimage with the cadastral boundaries affirmation, It is anticipated that the cost saving effect of current survey and boundary survey can be expected. In addition, it is easy to prepare a report to reduce civil complaints, which is a problematic element of the adjustment.

Aerial Dataset Integration For Vehicle Detection Based on YOLOv4

  • Omar, Wael;Oh, Youngon;Chung, Jinwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.747-761
    • /
    • 2021
  • With the increasing application of UAVs in intelligent transportation systems, vehicle detection for aerial images has become an essential engineering technology and has academic research significance. In this paper, a vehicle detection method for aerial images based on the YOLOv4 deep learning algorithm is presented. At present, the most known datasets are VOC (The PASCAL Visual Object Classes Challenge), ImageNet, and COCO (Microsoft Common Objects in Context), which comply with the vehicle detection from UAV. An integrated dataset not only reflects its quantity and photo quality but also its diversity which affects the detection accuracy. The method integrates three public aerial image datasets VAID, UAVD, DOTA suitable for YOLOv4. The training model presents good test results especially for small objects, rotating objects, as well as compact and dense objects, and meets the real-time detection requirements. For future work, we will integrate one more aerial image dataset acquired by our lab to increase the number and diversity of training samples, at the same time, while meeting the real-time requirements.