산불 피해는 복구, 보상 및 2차 피해 예방을 위해 빠르고 정확히 조사되어야 한다. 원격탐사 기반의 산불 피해강도 조사 방법으로 주로 산불 전과 후의 반사율 및 분광지수의 차이를 비교하고 있다. 최근 고해상도 위성영상 및 무인기 영상의 활용이 증가하고 있으나, 언제 어디에서 발생할지 예측할 수 없는 산불에 대한 발생 전 영상을 획득하는 것이 쉽지 않다. 본 연구에서는 산불 피해강도 분류에 있어 고해상도 영상과 감독분류 기법의 활용 가능성을 분석하고자 하였다. 산불 후에 촬영된 KOMPSAT-3A 영상과 무인기 다중분광영상에 반사율의 절대값을 이용하는 최대우도법과 반사율의 패턴을 이용하는 분광각매퍼의 두 가지 감독분류 기법을 적용하였다. 그 결과 분류 기법 측면에서 최대우도법이 분광각매퍼에 비해 높은 분류정확도를 보여주었으며, 이는 피해강도 등급 간에 분광반사율의 절대값은 다르지만 패턴이 유사한 등급들이 존재하기 때문인 것으로 판단된다. 공간해상도 측면에서 상대적으로 해상도가 높은 무인기 영상의 분류정확도가 위성영상보다 높게 나타났다. 그러나 무인기와 위성 영상 모두 분류정확도가 매우 높게 나타나고 있어 피해강도 분류에 활용 가능성이 높다고 할 수 있다. 따라서, 피해강도 분류에 있어 산불 후에 촬영된 고해상도 영상들을 이용할 수 있을 것으로 판단된다.
본 연구에서는 무인항공영상의 품질 평가를 위해 공간해상도 검정 방법 중 하나인 MTF(Modulation Transfer Function)를 Circular target을 이용하여 평가하는 방안을 제시하고, MATLAB GUI 기반 해상도 분석 Tool을 제작하여 무인항공영상 품질의 신뢰도와 작업의 효율성을 높이고자 하였다. 이를 위해 무인항공기체인 DJI Phantom 4 Pro(FC 6310)기체는 80m, 120m, 150m, Matrice 600(iXM-100)기체는 150m, 200m, 400m의 서로 다른 고도에서 촬영하였으며, 유인항공영상과 비교를 위해 UltraCAM Eagle Mark 2 센서로 비행고도 1000m에서 영상을 촬영하여 MTF를 비교하였다. 연구 결과 DJI Phantom 4 Pro(FC 6310)기체의 ${\sigma}MTFs$ 수치는 촬영고도에 따라 0.431, 0.524, 0.699, Matrice 600(iXM-100)기체의 ${\sigma}MTFs$ 수치는 촬영고도에 따라 0.332, 0.393, 0.631의 결과를 나타내어 촬영고도가 높아질수록 영상의 품질이 낮아짐을 알 수 있었다. 동일한 고도인 150m의 경우 탑재된 카메라의 성능이 높은 Matrice 600(iXM-100)기체의 영상품질이 매우 높은 결과를 나타내어 카메라의 성능이 영상의 품질에 미치는 영향을 확인할 수 있었다. 또한, UltraCAM Eagle Mark 2 센서를 탑재한 유인항공영상의 ${\sigma}MTF$ 수치는 높은 비행고도로 인하여 0.711의 결과를 나타내어 모든 무인항공영상의 품질보다 낮은 결과를 나타내었다. 하지만 DJI Phantom 4 Pro(FC 6310)기체의 150m 고도에서 촬영한 무인항공영상에서 ${\sigma}MTF$ 수치는 0.699의 결과를 나타내어 유인항공영상의 품질과 거의 비슷한 결과를 나타내었다.
This research is aim to analyze of changing landscape and according to phenological cycle from image information of coastal environment obtained by multi-media were analyzed by camera and satellite image. The digital camera and satellite image were used for tidal flat vegetation monitoring during the construction of Sihwa lake. The vegetation type and phenological cycle of Sihwa tidal flat have been changed with the Sihwa lake ecosystem. The environment changes of Sihwa tidal flat area and ecological change were analyzed by field work digital camera images and satellite images. The airborne, UAV and satellite images were classified with the changed elements of coastal ecological environment and tidal flat vegetation monitoring carried out the changed area and shape of vegetation distribution with time series images.
토지피복도는 지역의 현황을 파악하는 기초적 자료이지만 시간적 공간적 해상도의 한계로 인하여 생태 연구 분야에서의 활용성은 떨어지는 측면이 있다. 이에 본 연구에서는 UAV으로 취득된 고해상도 영상을 기반으로 토지피복도 제작과 자료의 활용가능성을 알아보고자 하였다. UAV를 이용하여 연구대상지 $2.5km^2$ 범위에서 10.5cm 정사영상을 취득하였으며 객체기반(Object-based)과 화소기반(pixel-based) 분류를 통해 얻어진 토지피복도를 비교 분석하였다. 정확도 검증 결과 화소기반 분류는 Kappa 0.77, 객체기반 분류는 Kappa 0.82로 분류정확도가 높았으며, 전반적인 면적비율은 유사하지만 초지, 습지 지역에서 양호한 분류 결과가 나타났다. 객체기반 분류를 위한 최적의 영상분할 가중치는 Scale150, Shape 0.5, Compactness 0.5, Color 1로 선정하였으며 가중치 선정과정에서 Scale이 가장 큰 영향을 주었다. 화소기반 분류 결과와 비교해 객체간의 명확한 경계를 가지므로 결과물 판독이 용이한 것으로 나타났으며, 환경부 토지피복도(세분류)와 비교하여 개발지역(도로, 건물 등)을 제외한 자연지역(산림, 초지, 습지 등)의 분류에 효과적이었다. UAV 영상을 활용한 토지피복 분류방법으로서 객체기반 분류기법의 적용은 자료의 최신성, 정확성, 경제성 등의 장점으로 생태 연구 분야에 기여할 수 있을 것으로 판단된다.
최근 초경량 무인비행장치(UAS: Unmanned Aerial System)에 저가의 소형 항법장치와 카메라 등의 센서를 탑재하여 지상의 공간정보를 신속하고 정확하게 취득하는 무인항공사진측량(UAV Photogrammetry)이 크게 주목받고 있다. 특히, 무인 항공사진측량은 저가의 일반 카메라로 취득된 다량의 고해상 영상을 컴퓨터 비전기술을 접목한 영상처리 소프트웨어로 정사영상과 DEM 등을 신속히 생성할 수 있어 기존의 항공사진측량을 서서히 대체하고 있다. 따라서 무인항공사진측량의 활용분야는 정밀한 위치정보를 요구하는 대축척 지형도제작과 지적측량 등에까지 확장 적용되고 있다. 본 연구에서는 고정익 무인항공기로 지상표본거리(GSD: Ground Sample Distance) 4cm로 촬영된 영상을 이용하여 농경지 필지의 경계설정 정확도 실험 결과를 소개하였다. 연구결과, 지적현황측량 성과와 비교하여 무인항공 정사영상으로부터 추출된 필지경계점의 정확도는 8cm미만으로 축척 1:500 지적측량을 위한 연결교차의 허용범위를 만족하였다. 그리고 면적오차는 비교 기준면적인 1,969m2에 비하여 약 0.2%(3.3m2) 미만의 무시가능한 미소 오차가 발생하였다. 따라서 무인항공사진측량은 농경지의 필지경계 설정을 위하여 충분히 적용 가능한 전도유망한 기술임을 입증하였다.
The study aims to propose a method that shall rapidly acquire 3D spatial information of the frequently changing city areas by using the low altitude aerial images taken by the UAV. The artificial 3D model of the artificial structures was constructed using the aerial image data photographed at the test area, calibration data of the non-metric camera and the results of the ground control point survey. Also, the digital surface model was created for areas that were changed due to a number of civil works. Through the above studies, the possibilities of constructing a 3D virtual city model, renewal of 3D GIS database, abstraction of changed information in geographic features and on-demand updating of the digital map were suggested.
무인항공기는 운용비용이 저렴하고 데이터를 신속하게 취득할 수 있는 장점이 있기 때문에 재해지역의 분석, 지도제작 등과 같은 국토모니터링 분야에 효과적으로 활용될 수 있다. 본 연구에서는 무인항공기의 국토모니터링분야 적용가능성을 평가하기 위해서 지도제작과 관련된 법 제도를 검토하고 개선방안을 제시하였다. 또한 수시갱신용 지도제작 및 재난 재해분야 적용 가능성을 살펴보기 위하여 무인항공기 영상을 취득 후 자료처리를 수행하고 정확도를 평가하였다. 자료처리결과 GPS/INS자료만을 이용했을 경우 약 10m, 지상기준점을 이용했을 경우 10cm의 오차를 보였으며, 따라서 국토모니터링분야에 무인항공기를 효과적으로 활용이 가능함을 알 수 있었다.
Unmanned Aerial Vehicle (UAV) has several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude, they can obtain good quality images even in cloudy weather. In this paper, we developed for estimating garlic growth at field scale model in major cultivation regions. We used the $NDVI_{UAV}$ that reflects the crop conditions, and seven meteorological elements for 3 major cultivation regions from 2015 to 2017. For this study, UAV imagery was taken at Taean, Changnyeong, and Hapcheon regions nine times from early February to late June during the garlic growing season. Four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.), and fresh weight (F.W.) were measured for twenty plants per plot for each field campaign. The multiple linear regression models were suggested by using backward elimination and stepwise selection in the extraction of independent variables. As a result, model of cold type explain 82.1%, 65.9%, 64.5%, and 61.7% of the P.H., F.W., L.N., P.D. with a root mean square error (RMSE) of 7.98 cm, 5.91 g, 1.05, and 3.43 cm. Especially, model of warm type explain 92.9%, 88.6%, 62.8%, 54.6% of the P.H., P.D., L.N., F.W. with a root mean square error (RMSE) of 16.41 cm, 9.08 cm, 1.12, 19.51 g. The spatial distribution map of garlic growth was in strong agreement with the field measurements in terms of field variation and relative numerical values when $NDVI_{UAV}$ was applied to multiple linear regression models. These results will also be useful for determining the UAV multi-spectral imagery necessary to estimate growth parameters of garlic.
쌀 수급 조절 정책의 합리적 수립을 지원하기 위해서는 벼 재배면적의 조기 추정이 필요하다. 본 연구는 국내 벼 주산지인 김제시를 대상으로 Sentinel-1 위성영상을 활용하여 이앙이 마무리되는 7월 초순 벼 재배면적을 조기에 추정하기 위해 최적의 훈련자료 수집을 위한 무인기(UAV) 영상 활용 방안을 제시하고자 수행하였다. 5월부터 7월 초까지 수집한 Sentinel-1 위성영상은 ESA에서 제공하는 SNAP(SeNtinel application platform, Version 8.0)프로그램으로 전처리하고 팜맵을 활용하여 농경지만을 추출하였다. 벼 재배지 중심 지역과 벼·콩 혼재지 무인기 영상 촬영 영역을 혼합하여 훈련자료로 선정하여 김제시 전체 벼 재배지를 추정한 결과, 정확도와 카파 계수는 각각 89.9%, 0.774로 가장 좋은 결과를 보였는데, 이는 김제시 전역을 대상으로 무작위 표본조사를 수행하여 분류한 결과와 비교 시 전체 정확도 1% 내외, 카파 계수 0.02~0.04 범위에서 차이를 보여 벼 재배지 조기 추정을 위한 무인기 영상 활용 가능성을 확인할 수 있었다.
공간해상도는 영상품질을 평가하는 매우 중요한 파라미터들 중의 하나이다. 본 연구에서는 무인 항공영상의 품질평가 방안의 일환으로 bar target과 Siemens star 도형을 이용하여 공간해상도와 MTF(Modulation Transfer Function)를 평가하는 방안을 제시하였다. 이를 위하여 고정익 eBee(Canon IXUS)로는 비행고도 130m와 260m로 촬영하고, 회전익 GD-800(SONY NEX-5N)으로는 130m, Phantom 4 pro(FC 6310)는 90m 고도에서 각각 촬영하여 정사영상을 제작하여 공간해상도를 측정하였다. 실험결과 공간해상도는 Siemens star와 Bar target 모두에서 카메라에 관계없이 정확히 비행고도에 비례하여 낮아짐을 알 수 있었다. 즉, 서로 상이한 카메라가 탑재된 Canon IXUS(eBee)와 SONY NEX-5N(GD-800)으로 130m의 동일 고도에서 촬영한 영상의 공간해상도는 4.1cm로 동일하였으며, eBee 260m의 경우에는 공간해상도가 8.0cm이었다. 아울러 Siemens star로 측정한 해상도가 Bar target에 비하여 모든 고도에서 1~2cm 가량 낮았다. 영상의 해상도와 명암 정보를 동시에 나타내는 MTF의 ${\sigma}_{MTF}$ 측정에서도 비행고도에 비례하는 일반적인 경향을 알 수 있었다. 하지만 130m 동일고도에서 SONY NEX-5N(GD-800)의 ${\sigma}_{MTF}$ 는 0.36이고, Canon IXUS(eBee)는 0.59로 카메라 성능이 더 좋은 SONY NEX-5N(GD-800)이 우수함을 알 수 있었다. 본 연구의 결과는 무인항공영상의 공간해상도 분석과 품질의 신뢰도 향상에 기여할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.