• 제목/요약/키워드: UAV Helicopter

검색결과 56건 처리시간 0.028초

Attitude Control of an Electrically Powered UAV Helicopter

  • Kim, Jong-Kwon;Cho, Kyeum-Rae;Park, Soo-Hong;Shin, Ji-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.47.4-47
    • /
    • 2002
  • $\textbullet$ Introduction of UAV Helicopter $\textbullet$ System Specification $\textbullet$ Dynamics of Small EP Helicopter $\textbullet$ Construction of Electrical System $\textbullet$ LQG Control Law $\textbullet$ Simulations $\textbullet$ Results and Analysis

  • PDF

틸트 로터 무인항공기의 피로하중 스펙트럼 생성 및 피로해석 (The Development of Fatigue Load Spectrum and Fatigue Analysis for the Tilt Rotor UAV)

  • 임종빈;박영철;박정선;이정진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.654-659
    • /
    • 2007
  • In this paper, the fatigue load spectrum for tilt rotor UAV is developed and fatigue analysis is achieved for flaperon joint. Tilt rotor UAV has two modes which are helicopter mode when UAV is taking off and landing and fixed wing mode when UAV is cruising. To make fatigue load spectrum, FELIX for helicopter mode and TWIST for fixed wing mode are used. And Fatigue analysis of flaperon joint is achieved using fatigue load spectrum we obtained. When S-N test data are analyzed, we use the Kriging meta model to get probability S-N curve for whole range of material life. The result which is life of flaperon joint obtained by suggested fatigue analysis procedure in this paper is compared with that obtained by MSC/Fatigue.

  • PDF

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF

수직이착륙 무인기 함상 착륙점의 상하 운동 추정 (Heave Motion Estimation of a Ship Deck for Shipboard Landing of a VTOL UAV)

  • 조암;유창선;강영신;박범진
    • 항공우주시스템공학회지
    • /
    • 제8권3호
    • /
    • pp.14-19
    • /
    • 2014
  • When a helicopter lands on a ship deck in high sea states, one of main difficulties is the ship motion by sea wave, In case of a manned helicopter, a pilot lands a helicopter on the deck during quiescent period of ship motion, which is perceived from different visual cues around landing spot. The capability to predict this quiescent period is very important especially for shipboard recovery of VTOL UAV in harsh environments. This paper describes how to predict heave motion of a ship for shipboard landing of a VTOL UAV. For simulation, ship motion by sea wave was generated using a 4,000 ton class US destroyer model. Heave motion of ship deck was predicted by applying auto-regression method to generated time series data of ship motion.

틸트 로터형 무인항공기의 손상허용 설계 (Damage Tolerant Design for the Tilt Rotor UAV)

  • 박영철;임종빈;박정선
    • 항공우주시스템공학회지
    • /
    • 제1권2호
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

틸트로터 무인기의 날개-나셀 공력해석 (Aerodynamic Analysis on Wing-Nacelle of Tiltrotor UAV)

  • 최성욱;김철완;김재무
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.27-34
    • /
    • 2004
  • In the Smart UAV Development Program, one of the 21c Frontier R&D Program, the tiltrotor has been studied as the concept of vehicle. The tiltrortor aircraft take-off and land in rotary wing mode like conventional helicopter, and cruise in fixed wing mode like conventional propeller airplane. For the conversion of the flight mode from helicopter to airplane, the nacelle located at wing tip has to be tilted from about 90 degrees of helicopter mode to about 0 degree of airplane mode. In this study, the aerodynamic characteristics of the wing with tilted nacelle is investigated using computation fluid dynamics technique. In order to feature out aerodynamic interferences between wing and nacelle, the flow calculations are conducted for the wing and the nacelle separately and for the combined geometry of wing and nacelle, respectively. Through this computations, not only the aerodynamic data-base for the wing-nacelle is constructed but also its contribution to the configuration design of the wing-nacelle is anticipated.

  • PDF

Embedded Real-Time Software Architecture for Unmanned Autonomous Helicopters

  • Hong, Won-Eui;Lee, Jae-Shin;Rai, Laxmisha;Kang, Soon-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권4호
    • /
    • pp.243-248
    • /
    • 2005
  • The UAV (Unmanned Aerial Vehicle) systems like unmanned autonomous helicopters are used in various missions of flight navigation and used to collect the environmental information of the surroundings. To realize the full functionalities of the UAV, the software part becomes a challenging problem. In this paper embedded real-time software architecture for unmanned autonomous helicopter is proposed that guarantee real-time performance of hard-real time tasks and re-configurability of soft-real time and non-real time tasks. The proposed software architecture has four layers: hardware, execution, service agent and remote user interface layer according to the reactiveness level for external events. In addition, the layered separation of concurrent tasks makes different kinds of mission reconfiguration possible in the system. An Unmanned autonomous helicopter system was implemented (Kyosho RC Helicopter) in our lab to test and evaluate the performance of the proposed system.

스마트 무인기의 천이 스케줄러 설계개선 (Design Update of Transition Scheduler for Smart UAV)

  • 강영신;유창선;김유신;안성준
    • 한국항공운항학회지
    • /
    • 제13권2호
    • /
    • pp.14-26
    • /
    • 2005
  • A tilt-rotor aircraft has various flight modes : helicopter, airplane, and conversion. Each of flight mode has unique and nonlinear flight characteristics. Therefore the gain schedules for whole flight envelope are required for effective flight performance. This paper proposes collective, flap, and nacelle angle scheduler for whole flight envelope of the Smart UAV(Unmanned Air Vehicle) based on CAMRAD(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) II analysis results. The scheduler designs are improved so that the pitch attitude angle of helicopter mode was minimized. The range of scheduler are reduced inside of engine performance limits. The conversion corridor and rotor governor are suggested also.

  • PDF

헥사로터형 무인기의 모델링과 P-PD기반 비행성능평가 (Dynamic Model and P-PD Control based Flight Performance Evaluation for Hexa-Rotor Type UAV)

  • 진태석
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1074-1080
    • /
    • 2015
  • In the last decades, the increasing interest in unmanned aerial vehicle(UAV) for military, surveillance, and rescue applications made necessary the development of flight control theory and body structure more and more efficient and fast. In this paper, we describe the design and performance of a prototype hexarotor UAV platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, dynamic modeling and simulation in the hexarotor helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(ARM-cortex) board. The P-PD control algorithm was used to control the hexarotor. We used the Matlab software to help us to tune the P-PD control parameters for quick response and minimizing the fluctuation. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.