• Title/Summary/Keyword: UAV Control

Search Result 527, Processing Time 0.027 seconds

Cooperative UAV/UGV Platform for a Wide Range of Visual Information (광범위 시야 정보를 위한 UAV와 UGV의 협업 연구)

  • Lee, Jae-Keun;Jung, Hahmin;Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.225-232
    • /
    • 2014
  • In this study, a cooperative UAV and UGV platform is proposed to obtain a wide range of visual information. The UAV recognizes a pattern marker on UGV and tracks the UGV without user control. It can provide wide range of visual information for a user in the UGV. The UGV by a user is controled equipped with an aluminum board. And the UAV can take off and land on the UGV. The UAV uses two cameras; one camera is used to recognize a pattern marker and another is used to provide a wide range of visual information to the UGV's user. It is guaranteed that the proposed visual-based approach detects and tracks the target marker on the UGV, and then lands well. The experimental results show that the proposed approach can effectively construct a cooperative UAV/UGV platform for obtaining a wide range of vision information.

Performance Evaluation of Control Allocation Methods on DURUMI-II UAV (두루미-II 무인기 기반의 조종력 할당 기법 성능 평가)

  • Min, Byoung-Mun;Kim, Eung-Tai;Lee, Jang-Ho;Tank, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • This paper focuses on the performance evaluation of various control allocation methods applied on DURUMI-II UAV system. In order to implement control allocation scheme to aircraft control system, control system can be designed through two step design procedure. The first step is to design a baseline control system for an aircraft without consideration of control surface failure. The second step is to design a control allocator that maps the total control command on the individual control surfaces. In this paper, several control allocation methods such as Psuedo-Inverse CA method, Direct CA method, and Optimization CA method are implemented and integrated to the baseline flight control system of DURUMI-II UAV. The performance of these control allocation methods is evaluated by nonlinear simulation under the flight scenario of control surface failure.

Generation of System Requirements for Smart UAV (스마트 무인기 시스템 요건 도출)

  • Lee, Jung Jin
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • This paper presents the brief generation process of system requirements for Smart UAV from a development objective. The current Smat UAV requirements deal with the restricted life cycle from development to test and verification exclusive of full life cycle because of the new technology demonstration research program funded by governments. The Smart UAV system consists of flight vehicle, avionics, communication link, payload, ground control station and ground supporting system. In this paper, top-down flown requirements are introduced how to allocate to each sub-system.

  • PDF

Determining UAV Flight Direction Control Method for Shooting the images of Multiple Users based on NUI/NUX (NUI/NUX 기반 복수의 사용자를 촬영하기 위한 UAV 비행방향 제어방법)

  • Kwak, Jeonghoon;Sung, Yunsick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.445-446
    • /
    • 2018
  • 최근 무인항공기 (Unmanned Aerial Vehicle, UAV)에 장착한 카메라를 활용하여 사용자의 눈높이가 아닌 새로운 시각에서 사용자를 촬영한 영상을 제공한다. 사용자를 추적하며 촬영하기 위해 저전력 블루투스 (Bluetooth Low Energy, BLE) 신호, 영상, 그리고 Natural User Interface/Natual User Experience(NUI/NUX) 기술을 활용한다. BLE 신호로 사용자를 추적하는 경우 사용자의 후방에서 추적하며 사용자만을 추적하며 촬영 가능한 문제가 있다. 하지만 복수의 사용자를 전방에서 추적하며 촬영하는 방법이 필요하다. 본 논문에서는 복수의 사용자를 추적하며 전방에서 촬영하기 위해 UAV의 비행방향을 결정하는 방법을 설명한다. 복수의 사용자로부터 측정 가능한 BLE 신호들을 UAV에서 측정한다. 복수개의 BLE 신호의 변화를 활용하여 UAV의 비행방향을 결정한다.

Study on Practical Design of Datalink in Interoperable UAV Systems (무인기 상호운용시스템에서 실용적인 데이터링크 설계방안 연구)

  • Kyu-Hwan Lee;Myeonggeun Oh;Jihoon Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.51-59
    • /
    • 2024
  • Uumanned aerial vehicle(UAV) systems have been used in various fields including industry and military. According to increasing the number of UAVs, the attention on interoperable UAV systems is increasing. In this paper, we propose the practical design of datalink in interoperable UAV systems. For practical design, we firstly review the operational scenarios in the interoperable UAV system. We then propose the system model of the datalink in interoperable UAV system. Consequently, the technical components such as the design of the network, the link management, the support of the multicast transmission, the support for autonomous mission and flight safety, and the datalink security are derived and reviewed for the practical design.

Improved Anti-Jamming Frame Error Rate and Hamming Code Repetitive Transmission Techniques for Enhanced SATURN Network Reliability Supporting UAV Operations (UAV 운영 신뢰성 개선을 위한 SATURN 통신망 항재밍 프레임 오율과 해밍코드 반복 전송 향상 기술)

  • Hwang, Yoonha;Baik, Jungsuk;Gu, Gyoan;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • As the performance of Unmanned Aerial Vehicles (UAVs) are improving and the prices are lowering, it is expected that the use of UAVs will continuously grow in the future. It is important to always maintain control signal and video communication to operate remote UAVs stably, especially in military UAV operations, as unexpected jamming attacks can result in fatal UAV crashes. In this paper, to improve the network reliability and low latency when supporting UAV operations, the anti-jamming performance of Second generation Anti-jam Tactical UHF Radio for NATO (SATURN) networks is analyzed and enhanced by applying Forward Error Correction (FEC) and Minimum Shift Keying (MSK) modulation as well as Hamming code based multiple transmission techniques.

Real-Time Shooting Area Analysis Algorithm of UAV Considering Three-Dimensional Topography (입체적 지형을 고려한 무인항공기의 실시간 촬영 영역 분석 알고리즘)

  • Park, Woo-Min;Choi, Jeong-Hun;Choi, Seong-Geun;Hwang, Nam-Du;Kim, Hwan-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1196-1206
    • /
    • 2013
  • In this paper, based on the information about navigation system of UAV with PTZ camera and 3D topography, algorithm able to show us in real-time UAV's geographical shooting location and automatically calculate superficial measure of the shooting area is proposed. And the method that can automatically estimate whether UAV is allowed to shoot a specific area is shown. In case of an UAV's shooting attempt at the specific area, obtainability of valid image depends on not only UAV's location but also information of 3D topography. As a result of the study, Ground Control Center will have real-time information about whether UAV can shoot the needed topography. Therefore, accurate remote flight control will be possible in real-time. Furthermore, the algorithm and the method of estimating shooting probability can be applied to pre-flight simulation and set of flight route.

Control of Multiple UAV's based on Swarm Intelligence (무리지능을 이용한 복수 무인기 제어)

  • Oh, Soo-Hun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.141-152
    • /
    • 2009
  • The simultaneous operation of multiple UAV's makes it possible for us to raise the mission accomplishment and cost efficiency. For this we need an easily scalable control algorithm, and swarm intelligence having the characteristics such as flexibility, robustness, decentralized control and self-organization comes into the spotlight as a practical substitute. In this paper the features of swarm intelligence are described, and various research results are introduced which show that the application of swarm intelligence to the control of multiple UAV's enables the missions of surveillance, path planning, target tracking and attack to be accomplished efficiently by simulations and tests.

  • PDF

Trajectory Guidance and Control for a Small UAV

  • Sato, Yoichi;Yamasaki, Takeshi;Takano, Hiroyuki;Baba, Yoriaki
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • The objective of this paper is to present trajectory guidance and control system with a dynamic inversion for a small unmanned aerial vehicle (UAV). The UAV model is expressed by fixed-mass rigid-body six-degree-of-freedom equations of motion, which include the detailed aerodynamic coefficients, the engine model and the actuator models that have lags and limits. A trajectory is generated from the given waypoints using cubic spline functions of a flight distance. The commanded values of an angle of attack, a sideslip angle, a bank angle and a thrust, are calculated from guidance forces to trace the flight trajectory. To adapt various waypoint locations, a proportional navigation is combined with the guidance system. By the decision logic, appropriate guidance law is selected. The flight control system to achieve the commands is designed using a dynamic inversion approach. For a dynamic inversion controller we use the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics, which include angle of attack, sideslip angle, and bank angle. Some numerical simulations are conducted to see the performance of the proposed guidance and control system.

Vision Based Estimation of 3-D Position of Target for Target Following Guidance/Control of UAV (무인 항공기의 목표물 추적을 위한 영상 기반 목표물 위치 추정)

  • Kim, Jong-Hun;Lee, Dae-Woo;Cho, Kyeum-Rae;Jo, Seon-Yeong;Kim, Jung-Ho;Han, Dong-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1205-1211
    • /
    • 2008
  • This paper describes methods to estimate 3-D position of target with respect to reference frame through monocular image from unmanned aerial vehicle (UAV). 3-D position of target is used as information for surveillance, recognition and attack. In this paper. 3-D position of target is estimated to make guidance and control law, which can follow target, user interested. It is necessary that position of target is measured in image to solve 3-D position of target. In this paper, kalman filter is used to track and output position of target in image. Estimation of target's 3-D position is possible using result of image tracking and information of UAV and camera. To estimate this, two algorithms are used. One is methode from arithmetic derivation of dynamics between UAV, carmer, and target. The other is LPV (Linear Parametric Varying). These methods have been run on simulation, and compared in this paper.