• Title/Summary/Keyword: UAV Control

Search Result 527, Processing Time 0.025 seconds

U.A.V control by kalman filtering (칼만 필터링을 통한 U.A.V 제어)

  • Ha, Yun-Su;Yoon, Yeo-Myung;Jung, Jae-Oh;Choi, Won-Gyun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.284-284
    • /
    • 2011
  • Survivors of accidents in the area to check in. check now people will be direct. To reduce the risk UAV with a camera resolution of the survivors fled afar possible. In addition, a stable control for Kalman filter and PID control was used to Even beginners can easily control the UAV is characteristic.

  • PDF

UAV Auto Pilot System Development with GPS & Infrared Heat sensor (GPS와 적외선 열 센서를 이용한 무인항공기 자동비행 시스템 개발)

  • Choi, Jin-Won;Moon, Jung-Ho;Park, Wook-Je;Chang, Jae-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • In this paper, we developed the algorithm to control longitudinal and lateral motion of UAV(Unmanned Aerial Vehicle) with Infrared heat sensors and GPS(Global Positioning System) receiver. UAV was controlled to be flown horizontally and also turned coordinately maintaining the constant altitude. Accomplishing the flight test of UAV sevral times, we were able to develope low price controller to control bank angle for lateral motion, and also pitch angle and altitude for longitudinal motion simultaneously.

  • PDF

Indoor 3D Map Building using the Sinusoidal Flight Trajectory of a UAV (UAV의 정현파 궤적 알고리즘을 이용한 3차원 실내 맵빌딩)

  • Hwang, Yo-Seop;Choi, Won-Suck;Woo, Chang-Jun;Wang, Zhi-Tao;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.465-470
    • /
    • 2015
  • This paper proposes a robust 3D mapping system for a UAV (Unmanned Aerial Vehicle) that carries a LRF (Laser Range Finder) using the sinusoidal trajectory algorithm. In the case of previous 3D mapping research, the UAV usually takes off vertically and flights up and down while the LRF is measuring horizontally. In such cases, the measuring range is limited and it takes a long time to do mapping. By using the sinusoidal trajectory algorithm proposed in this research, the 3D mapping can be time-efficient and the measuring range can be widened. The 3D mapping experiments have been done to evaluate the performance of the sinusoidal trajectory algorithm by scanning indoor walls.

Air-Ground Cooperating Robots: Applications and Challenges (공중-지상 로봇 협동 기술과 그 응용 및 연구 방향)

  • Yu, Seung-Eun;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • Researches on air-ground robot cooperating system has been made recently. The cooperation among homogeneous robots focused on the architecture of the system, quality and influence of the communication. In contrast, the cooperation among heterogeneous robots such as aerial vehicle and ground vehicle robots has not been much handled. There are a couple of main points for those air-ground cooperating robots. One is using UAV (Unmanned Aerial Vehicle) as an extra sensor of UGV (Unmanned Ground Vehicle). This kind of application is usually used in situations such as guiding UGV to an appropriate path which could be better determined from the eye in the sky as UAV. The other main application of air-ground cooperating robot system is the localization. By combining sensor information from both UAV and UGV, the robot system as a whole can localize a target object or find features in the environment with better performance than UGV or UAV alone. Although these applications are recently studied in many different ways and devices, there are still a lot of possibilities in the field of air-ground cooperating robot systems. We introduce those research fields in this paper.

Path Generation Method of UAV Autopilots Using Max-Min Algorithm

  • Kwak, Jeonghoon;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1457-1463
    • /
    • 2018
  • In recent times, Natural User Interface/Natural User Experience (NUI/NUX) technology has found widespread application across a diverse range of fields and is also utilized for controlling unmanned aerial vehicles (UAVs). Even if the user controls the UAV by utilizing the NUI/NUX technology, it is difficult for the user to easily control the UAV. The user needs an autopilot to easily control the UAV. The user needs a flight path to use the autopilot. The user sets the flight path based on the waypoints. UAVs normally fly straight from one waypoint to another. However, if flight between two waypoints is in a straight line, UAVs may collide with obstacles. In order to solve collision problems, flight records can be utilized to adjust the generated path taking the locations of the obstacles into consideration. This paper proposes a natural path generation method between waypoints based on flight records collected through UAVs flown by users. Bayesian probability is utilized to select paths most similar to the flight records to connect two waypoints. These paths are generated by selection of the center path corresponding to the highest Bayesian probability. While the K-means algorithm-based straight-line method generated paths that led to UAV collisions, the proposed method generates paths that allow UAVs to avoid obstacles.

Monitoring of non-point Pollutant Sources: Management Status and Load Change of Composting in a Rural Area based on UAV (UAV를 활용한 농촌지역 비점오염원 야적퇴비 관리상태 및 적재량 변화 모니터링)

  • PARK, Geon-Ung;PARK, Kyung-Hun;MOON, Byung-Hyun;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.

Parametric Optimization Procedure for Robust Flight Control System Design

  • Tunik, Anatol A.;Ryu, Hyeok;Lee, Hae-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.95-107
    • /
    • 2001
  • This paper is devoted to the parameter optimization of unmanned aerial vehicle's (UAV) flight control laws. Optimization procedure is based on the ideas of mixed $H_2/H_{\infty}$ control of multi-model plants. By using this approach, some partial $H_2$-terms defining the performance of nominal and parametrically perturbed Flight Control System (FCS) responses to deterministic command signals in stochastic atmosphere as well as $H_{\infty}$-terms defining robustness of the FCS can be incorporated in the composite cost function. Special penalty function imposed on the location of closed-loop system's poles keeps the speed of response and oscillatory properties for both nominal and perturbed FCS in reasonable limits. That is the reason why this procedure may provide reasonable trade-off between the performance and robustness of FCS that are very important especially for UAV. Its practical importance is illustrated by case studies of lateral and longitudinal control of small UAV.

  • PDF

A study on the security threat and security requirements for multi unmanned aerial vehicles (무인기 군집 비행 보안위협 및 보안요구사항 연구)

  • Kim, Mansik;Kang, Jungho;Jun, Moon-seog
    • Journal of Digital Convergence
    • /
    • v.15 no.8
    • /
    • pp.195-202
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAV) have mostly been used for military purposes but with the progress in ICT and reduced manufacturing costs, they are increasingly used for various private services. UAVs are expected to carry out autonomous flying in the future. In order to carry out complex tasks, swarm flights are essential. Although the swarm flights has been researched a lot due to its different network and infrastructure from the existing UAV system, There are still not enough study on security threats and requirements for the secure swarm flights. In this paper, to solve these problems, UAV autonomous flight technology is defined based on US Army Corps of Engineers (USACE) and Air Force Research Laboratory (AFRL), and swarm flights and security threat about it are classified. And then we defined and compared security requirements according to security threats of each swarm flights so as to contribute to the development of secure UAC swarm flights in the future.

FLOW CONTROL OF SMART UAV AIRFOIL USING SYNTHETIC JET (Synthetic jet을 이용한 스마트 무인기 익형 주위의 유동 제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-50
    • /
    • 2009
  • In order to reduce the download around Smart UAV(SUAV) at hovering and transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including wing leading and trailing edge separation, and the large region of separated flow beneath the wing. First, in order to control the trailing edge separation, synthetic jet is located at 30, 95% of flap chord length. The flow control using synthetic jet on flap shows that stall characteristics depending on several mode can be improved through separation vortices resizing. Also, a flap jet and a 0.01c jet which control the separation efficiently are applied at the same time at each test case because controlling the leading edge separation is essential for download reduction. As a result, time averaged download is reduced about 18% comparing with no control case at hovering mode and 48% at transition mode. These research results show that if flow control using leading edge jet and trailing edge jet is used effectively to the SUAV in overall flight mode, flight performance and stability can be improved.

  • PDF

Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs (중복도와 지상기준점에 따른 고정익 UAV 기반 정사영상 및 DSM의 품질 평가)

  • Yoo, Yong Ho;Choi, Jae Wan;Choi, Seok Keun;Jung, Sung Heuk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.3-9
    • /
    • 2016
  • UAV(unmanned aerial vehicle) can quickly produce orthoimage with high-spatial resolution and DSM(digital surface model) at low cost. However, vertical and horizontal positioning accuracy of orthoimage and DSM, which are obtained by UAV, are influenced by image processing techniques, quality of aerial photo, the number and position of GCPs(ground control points) and overlap in flight plan. In this study, effects of overlap and the number of GCPs are analyzed in orthoimage and DSM. Positioning accuracy are estimated based on RMSE(root mean square error) by using dataset of nine pairs. In the experiments, Overlaps and the number of GCPs have influence on horizontal and vertical accuracy of orthoimage and DSM.