• 제목/요약/키워드: UASB Reactor

Search Result 76, Processing Time 0.023 seconds

Developments and future potentials of anaerobic membrane bioreactors (AnMBRs)

  • Visvanathan, Chettiyappan;Abeynayaka, Amila
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.1-23
    • /
    • 2012
  • The coupling of anaerobic biological process and membrane separation could provide excellent suspended solids removal and better biomass retention for wastewater treatment. This coupling improves the biological treatment process while allowing for the recovery of energy through biogas. This review gives a basic description of the anaerobic wastewater treatment process, summarizes the state of the art of anaerobic membrane bioreactors (AnMBRs), and describes the current research trends and needs for the development of AnMBRs. The research interest on AnMBR has grown over the conventional anaerobic processes such as upflow anaerobic sludge blanket (UASB). Studies on AnMBRs have developed different reactor configurations to enhance performances. The AnMBR performances have achieved comparable status to other high rate anaerobic reactors. AnMBR is highly suitable for application with thermophilic anaerobic process to enhance performances. Studies indicate that the applications of AnMBR are not only limited to the high strength industrial wastewater treatment, but also for the municipal wastewater treatment. In recent years, there is a significant progress in the membrane fouling studies, which is a major concern in AnMBR application.

Chemical coagulation and sonolysis for total aromatic amines removal from anaerobically pre-treated textile wastewater: A comparative study

  • Verma, Akshaya K.;Bhunia, Puspendu;Dash, Rajesh R.
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.293-306
    • /
    • 2014
  • The present study primarily focuses on the evaluation of the comparative effect of chemical coagulation and ultrasonication for elimination of aromatic amines (AAs) present in anaerobically pretreated textile wastewater containing different types of dyes including azo dyes. Color and COD reduction was also monitored at the optimized conditions. The production of AAs was measured spectrophotometrically in the form of total aromatic amines (TAAs) and also verified with high performance liquid chromatography (HPLC) selectively. A composite coagulant, magnesium chloride (MC) aided with aluminium chlorohydrate (ACH) in an equal ratio (MC + ACH) was utilized during the coagulation process, which yielded 31% of TAAs removal along with 85% of color and 52% of COD reduction. At optimized power (200 W) and sonication time (5 h), an appreciable TAAs degradation efficiency (85%) was observed along with 51% color reduction and 62% COD removal using ultrasonication. The chromatographic data indicate that sulphanilic acid and benzidine types of aromatic amines were produced after the reductive cleavage of utilized textile dyes, which were effectively mineralized after ultrasonication. The degradation followed the first order kinetics with a correlation coefficient ($R^2$) of 0.89 and a first-order kinetic constant (k) of $0.0073min^{-1}$.

Effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) Process on Removal of the Organic Matters in Ammonia Stripped Swine Wastewater (ASBR(Anaerobic Sequencing Batch Reactor) 공정의 F/R비가 암모니아가 탈기된 축산폐수의 유기물 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.687-694
    • /
    • 2005
  • Lab-scale experiments have been carried out to investigate the effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) process on the removal of the organic matters in ammonia stripped swine wastewater. Three ASBR inoculated with sludge mixed with granular sludge of UASB (Upflow Anaerobic Sludge Blanket) and anaerobic digested sludge of municipal wastewater treatment plant were operated. Ammonia stripped swine wastewater was used as influent. Prior to conducting the experiments with varied conditions, the effect of increasing organic loading rate from 2.34 to $5.79gTCOD_{Cr}/L$-day at a fixed F/R ratio of 0.1 on the organic removal efficiency has been studied during start-up period. As the result of the experiment, under the condition of varied organic loadings, less than $4.14gTCOD_{Cr}/L$-day, the removed efficiency $TCOD_{Cr}$ of the ASBR process is 83% resulted from the mean value of effluent $TCOD_{Cr}$, 9,125 mg/L during the start-up period. Then ASBRs were operated with F/R ratio of 0.024, 0.303 and 0.91 respectively. Organic loading rate was increased from 4.56 to $15.43gTCOD_{Cr}/L$-day to investigate the effects of F/R ratio and organic loading rate on the organic removal efficiency. As the result of the experiment, less than $6.23gTCOD_{Cr}/L$/L-day, F/R ratio haven't an effect on the organic removal efficiency and the mean removal efficiency of TSS, $TCOD_{Cr}$ and $SCOD_{Cr}$ was about 80%, 86% and 78% at the all of F/R ratio. But as organic loading rate was increased from 8.54 to $12.04gTCOD_{Cr}/L$-day at the F/R ratio of 0.024, the removal efficiency of $SCOD_{Cr}$ decreased from 71% to 63%. The range of decreased removal efficiency of $SCOD_{Cr}$ at the F/R ratio of 0.024 was much more higher than at the F/R ratio of 0.303, 0.91. Thus, as organic loading rate was increased, ASBRs were operated with high F/R ratio to obtain high removal efficiency.

A Study on Anaerobic Treatment and Energy Recovery Technology of Food Waste by Using Hybrid Anaerobic Reactor (Hybrid Anaerobic Reactor를 이용한 음식물쓰레기의 혐기성처리 및 에너지 회수에 관한 연구)

  • Yoon Young-Bong;Park Jin-Young;Ju Jin-Young;Kim Myung-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.64-75
    • /
    • 2005
  • The total production of food waste was about 11,398ton/day('03) in Korea. Also, food waste was treated by landfill, incineration, reuse and anaerobic digestion. The method of food waste treatment depended primarily on landfill. However, the method of landfill causing social problems was prevented to treat food waste in the first of January 2005.12) Thus, anaerobic digestion is an important method to treat food waste because of possibility of energy recovery as methane gas. In this study, the possibility of food waste treatment containing high organic material and low pH in the one stage anaerobic reactor to save cost and time and energy recovery using $CH_{4}$ gas by the hybrid anaerobic reactor (HAR) was measured. The HAR was designed by combing the merits of the anaerobic filter (AF) to minimize the microorganism shock when food waste of very low pH was injected and up-flow anaerobic sludge blanket (UASB) to prevent from plugging and channeling phenomena by large suspended solids when semi solids were injected. Granule was packed in the section of HAR. The purpose of the BMP experiment was to measure the amount of methane generated when organic material was resolved under anaerobic conditions, to grasp bio resolution of organic material. Total accumulated methane production per VS amount was $0.471(m^{3}/\cal{kg}\;VS)$. So, the value was about $81.2\%$ of theoretical methane production which was $0.58(m^{3}/\cal{kg}\;VS)$ by elementary analysis and organic matter removal velocity (K) was $0.18(d^{-1})$. From these results, food waste was treated by anaerobic treatment. From this study, $CH_{4}$ generation from food waste (11,398 ton/day) could be estimated. By using an energy conversion factor of Braun's study, $5.97KWh/m^{3}\;CH4,\;60\%\;of\;CH_{4}$ gas generation, the amount of total energy producing food waste is to 6,727MWh/day. It could be confirmed that energy recovery using $CH_{4}$ gas was possible. Above these results, food waste containing organic matters of high concentration could be treated in HRT 30 days under an anaerobic condition, using the hybrid anaerobic reactor and reuse of $CH_{4}$ gas was possible.

Comparison of response surface methods for the optimization of an upflow anaerobic sludge blanket for the treatment of slaughterhouse wastewater

  • Chollom, Martha Noro;Rathilal, Sudesh;Swalaha, Feroz Mohammed;Bakare, Babatunde Femi;Tetteh, Emmanuel Kweinor
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.114-122
    • /
    • 2020
  • This study was aimed at using the Central Composite Design (CCD) and Box-Behnken Design (BBD) to compare the efficiency and to elucidate the main interacting parameters in the upflow anaerobic sludge blanket (UASB) reactor, namely: Organic Loading Rate (OLR), Hydraulic Retention Times (HRT) and pH at a constant temperature of 35℃. Optimum HRT (15 h), OLR (3.5 kg.m-3.d-1) and pH (7) resulted in biogas production of 5,800 mL/d and COD removal of 80.8%. BBD produced a higher desirability efficiency of 94% as compared to the CCD which was 92%. The regression quadratic models developed with high R2 values of 0.961 and 0.978 for both CCD and BBD, respectively, demonstrated that the interaction models could be used to pilot the design space. BBD model developed was more reliable with a higher prediction of biogas production (5,955.4 ± 225.3 mL/d) and COD removal (81.5 ± 1.014%), much close to the experimental results at a 95% confidence level. CCD model predictions was greater in terms of COD removal (82.6 ± 1.06% > 80.8%) and biogas production (4,636.31 mL/d ± 439.81 < 5,800 mL/d) which was less than the experimental results. Therefore, RSM can be adapted for optimizing various wastewater treatment processes.

Effects of Seeding Microorganisms, Hydrazine, and Nitrite Concentration on the Anammox Activity (혐기성 암모늄 산화균의 활성에 대한 식종미생물, 히드라진 및 아질산성 질소 농도의 영향)

  • Jung, Jin-Young;Kang, Shin-Hyun;Kim, Young-O;Chung, Yun-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.477-483
    • /
    • 2005
  • Anammox (Anaerobic Ammonium Oxidation) bacteria is recently discovered microorganism which can oxidize ammonium to nitrogen gas in the presence of nitrite under anaerobic conditions. The anammox process can save an energy for nitrification and need not require a carbon source for denitrification, however, the start-up periods takes a long time more than several months due to the long doubling time (approximately 11 days). In order to find the effects of seeding microorganisms, hydrazine, and nitrite concentration on the enhancement of the anammox activity, five kinds of microorganisms were selected. Among the several kinds of seeding microorganisms, the granule from acclimated microorganisms treating high concentration of ammonia nitrogen (A-1) and sludge from piggery wastewater treatment plant (A-2) were found to have a high anammox activity. In the case of A-1, the maximum nitrogen conversion rate represented 0.4 mg N/L-hr, and the amount of nitrite utilization was high compared to those of other seeding microorganisms. The A-4 represented a higher nitrogen conversion rate to 0.7 mg N/L-hr although the ammonium concentration in the serum bottle was high as 200 mg/L. Meanwhile, the anaerobic granule from UASB reactor treating distillery wastewater showed a low anammox activity due to the denitrification by the remained carbon sources in the granule. Hydrazine, intermediate product in anammox reaction, enhanced the anammox activity by representing 1.4 times of nitrogen gas was produced in the test bottle than that of control, when 0.4 mM of $N_2H_4$ was added to serum bottle which contains 5 mM of nitrite. The high concentration of nitrite (10 mM) resulted in the decrease of the anammox activity by showing lower production of nitrogen gas compared to that of 5 mM addition of nitrite concentration. As a result of FISH (Florescence In-Situ Hybridization) experiment, the Amx820 probe showed a more than 13% of anammox bacteria in a granule (A-1).