• Title/Summary/Keyword: U.J.S.

Search Result 1,672, Processing Time 0.025 seconds

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE EXPONENTIAL DISTRIBUTION BY RECORD VALUES

  • LEE, MIN-YOUNG;CHANG, SE-KYUNG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the exponential distribution. Let $\{X_n,\;n{\geq}1\}$ be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function(pdf) f(x). Let $Y_n=max\{X_1,\;X_2,\;{\cdots},\;X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of $\{X_n,\;n{\geq}1\}$, if $Y_j>Y_{j-1}$, j > 1. The indices at which the upper record values occur are given by the record times {u(n)}, $n{\geq}1$, where u(n)=min\{j{\mid}j>u(n-1),\;X_j>X_{u(n-1)},\;n{\geq}2\} and u(1) = 1. Suppose $X{\in}Exp(1)$. Then $\Large{E\;\left.{\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}}\right)=\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n)}}}\right)}$ and $\Large{E\;\left.{\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}}\right)=\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m-1)}}{X^s_{u(n-1)}}}\right)}$.

  • PDF

RECURRENCE RELATION FOR QUOTIENTS OF THE POWER DISTRIBUTION BY RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • Korean Journal of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the power distribution. Let {$X_n$, $n{\geq}1$} be a sequence of independent an identically distributed random variables with a common continuous distribution function(cdf) $F(x)$ and probability density function(pdf) $f(x)$. Let $Y_n=max\{X_1,X_2,{\cdots},X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of {$X_n$, $n{\geq}1$}, if $Y_j$ > $Y_{j-1}$, $j$ > 1. The indices at which the upper record values occur are given by the record times {$u(n)$}, $n{\geq}1$, where $u(n)=min\{j{\mid}j>u(n-1),X_j>X_{u(n-1)},n{\geq}2\}$ and $u(1)=1$. Suppose $X{\in}POW(0,1,{\theta})$ then $$E\left(\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}\right)=\frac{\theta}{s}E\left(\frac{X^r_{u(m)}}{X^s_{u(n-1)}}\right)+\frac{(s-\theta)}{s}E\left(\frac{X^r_{u(m)}}{X^s_{u(n)}\right)\;and\;E\left(\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}\right)=\frac{\theta}{n+1}\left[E\left(\frac{X^{r+1}_{u(m-1)}}{X^s_{u(n+1)}}\right)-E\left(\frac{X^{r+1}_{u(m)}}{X^s_{u(n-1)}}\right)+\frac{r+1}{\theta}E\left(\frac{X^r_{u(m)}}{X^s_{u(n)}}\right)\right]$$.

  • PDF

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE PARETO DISTRIBUTION BY RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.97-102
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the Pareto distribution. Let {$X_n,n\qeq1$}be a sequence of independent and identically distributed random variables with a common continuous distribution function(cdf) F($chi$) and probability density function(pdf) f($chi$). Let $Y_n\;=\;mas{X_1,X_2,...,X_n}$ for $ngeq1$. We say $X_{j}$ is an upper record value of {$X_{n},n\geq1$}, if $Y_{j}$$Y_{j-1}$,j>1. The indices at which the upper record values occur are given by the record times ${u( n)}n,\geq1$, where u(n) = min{j|j >u(n-l), $X_{j}$$X_{u(n-1)}$,n\qeq2$ and u(l) = 1. Suppose $X{\epsilon}PAR(\frac{1}{\beta},\frac{1}{\beta}$ then E$(\frac{{X^\tau}}_{u(m)}}{{X^{s+1}}_{u(n)})\;=\;\frac{1}{s}E$ E$(\frac{{X^\tau}}_{u(m)}{{X^s}_{u(n-1)}})$ - $\frac{(1+\betas)}{s}E(\frac{{X^\tau}_{u(m)}}{{X^s}_{u(n)}}$ and E$(\frac{{X^{\tau+1}}_{u(m)}}{{X^s}_{u(n)}})$ = $\frac{1}{(r+1)\beta}$ [E$(\frac{{X^{\tau+1}}}_u(m)}{{X^s}_{u(n-1)}})$ - E$(\frac{{X^{\tau+1}}_u(m)}}{{X^s}_{u(n-1)}})$ - (r+1)E$(\frac{{X^\tau}_{u(m)}}{{X^s}_{u(n)}})$]

  • PDF

A Study on Soil Improvement by Using High Pressure Grouting (고압분사공법에 의한 지반개량에 관한 연구)

  • Yoo, Jang-Heun;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.998-1004
    • /
    • 2005
  • U.J.S.(Ultra Jetting System) is a new ground improvement method registered as a Utility Model No.0205798, which has fundamentally improved the existing jetting method of J.S.P.(Jumbo Special Pattern System). In this study, the uniaxial compressive strengths of improved soil-grout structures by U.J.S. and J.S.P. which have been conducted on the construction site are compared. Also, the differences between the U.J.S. and J.S.P. are analyzed by considering the role of the auger bit, the injection distance measured from the axis of boring tubes, and angle of injection measured from the horizontal. The specimens of soil-grout structures are taken from the improved soils by using the U.J.S. and J.S.P. The uniaxial tests for the samples are conducted after the curing period of 28 days. The uniaxial compressive strengths and the coefficients of elasticity of surface and distance from the axis of boring. This study shows that the mean strength of the improved structure by J.S.P. is 1.9 times greater than by J.S.P.

  • PDF

AN ANALOGUE OF THE HILTON-MILNER THEOREM FOR WEAK COMPOSITIONS

  • Ku, Cheng Yeaw;Wong, Kok Bin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.1007-1025
    • /
    • 2015
  • Let $\mathbb{N}_0$ be the set of non-negative integers, and let P(n, l) denote the set of all weak compositions of n with l parts, i.e., $P(n,l)=\{(x_1,x_2,{\cdots},x_l){\in}\mathbb{N}^l_0\;:\;x_1+x_2+{\cdots}+x_l=n\}$. For any element $u=(u_1,u_2,{\cdots},u_l){\in}P(n,l)$, denote its ith-coordinate by u(i), i.e., $u(i)=u_i$. A family $A{\subseteq}P(n,l)$ is said to be t-intersecting if ${\mid}\{i:u(i)=v(i)\}{\mid}{\geq}t$ for all $u,v{\epsilon}A$. A family $A{\subseteq}P(n,l)$ is said to be trivially t-intersecting if there is a t-set T of $[l]=\{1,2,{\cdots},l\}$ and elements $y_s{\in}\mathbb{N}_0(s{\in}T)$ such that $A=\{u{\in}P(n,l):u(j)=yj\;for\;all\;j{\in}T\}$. We prove that given any positive integers l, t with $l{\geq}2t+3$, there exists a constant $n_0(l,t)$ depending only on l and t, such that for all $n{\geq}n_0(l,t)$, if $A{\subseteq}P(n,l)$ is non-trivially t-intersecting, then $${\mid}A{\mid}{\leq}(^{n+l-t-l}_{l-t-1})-(^{n-1}_{l-t-1})+t$$. Moreover, equality holds if and only if there is a t-set T of [l] such that $$A=\bigcup_{s{\in}[l]{\backslash}T}\;A_s{\cup}\{q_i:i{\in}T\}$$, where $$A_s=\{u{\in}P(n,l):u(j)=0\;for\;all\;j{\in}T\;and\;u(s)=0\}$$ and $$q_i{\in}P(n,l)\;with\;q_i(j)=0\;fo\;all\;j{\in}[l]{\backslash}\{i\}\;and\;q_i(i)=n$$.

Untersuchungen iiber Blutenknospenbildung bei Ribes nigrum L. (리베스(Ribes nigrum L. var. 'Rosenthals Langtraubige Schwarze') 식물의 화아분화에 관한 연구)

  • Yang, Deok Cho
    • Journal of Plant Biology
    • /
    • v.27 no.3
    • /
    • pp.179-189
    • /
    • 1984
  • Durch vergleichende Untersuchungen von Ribes nigrum L. var. 'Rosenthals Langtraubige Schwarze' zwischen $prim\"{a}rem$ und $sekund\"{a}rem$ Jugendstadium (P.J. und S.J.) eine vertiefte Einsicht in die beiden zeitlich unterschielich langen $Entwicklungsabl\"{a}ufe$ zu bekommen und auf diese Weise bessere Ansatzpunke $f\"{u}r$ die Regulierung der $Bl\"{u}tc-nknospeninduktion$ zu gewinnen, war das Ziel vorliegenden Untersuchungen. Diese Untersuchungen $f\"{u}hrten$ zu den flogenden Ergebnissen: Die Dauer der Jugendphase von Ribes nigrum L. betrug bei den P.J.-Pflanzen ca. 7 Monate, bei den S.J.-Pflanzen ca. 5 Monate. Die $Bl\"{u}hreife$-(Ripeness to flower)-setzte bei den P.J.-Pflanzen erst beim 20. Nodium ein, bei den S.J.-Pflanzen bereits beim 5. Nodium. Das $f\"{u}hrte$ dazu, da${\beta}$ bei gleicher Nodienzahl die P.J.-Pflanzen weniger $Bl\"{u}te-nknospen$ angesetzt hatten als die S.J.-Pflanzen. Die erste $Bl\"{u}tenknospendifferenzierung$ setzte bei den P.J.-Pflanzen in der oberen Triebmitte etwa am 30. Nodium ein, beiden S.J.-Pflanzen bereits in der unteren Tricbmitte etwa am 20. Nodium. Bie den P.J.-Pflanzen waren die untersten 20. Nodien immer steril, $w\"{a}hrend$ bei den S.J.-Pflanzen $h\"{a}uflgsten$ an dem ersten Nodium $\"{u}ber$ der Basis fertil waren. In allen Versuchen hat sich gezeigt, da${\beta}$ der Wachstumsabschlu${\beta}$ -(Bildung einer Terminal Knospe)-, der bei Ribes nigrum L. durch Kurztag eingeleitet wird, bei den P.J.-Pflanzen langsammer als bei den S.J.-Pflanzen erfolgt. Dies $f\"{u}hrt$ dazu, da${\beta}$ die Pflanzen der $sekund\"{a}ren$ Jugendphase auf die photokybernetischen Stimulation empfindlicher reagieren als die der $prim\"{a}ren$ Jugendphase. Alle untersuchten Versuchsdaten $f\"{u}hren$ zu dem Schlu${\beta}$, da${\beta}$ die Wurzelgibberelline $(GA_n)$ keinen Einflu${\beta}$ auf die $Jugendsterilit\"{a}t$ ($Basissterilit\"{a}t$) haben. Aus den Untersuchungen geht hervor, da${\beta}$ die induktive Ma${\beta}$nahme zur Beschleunigung der $Bl\"{u}tenknospenbildung$ $f\"{u}r$ eine $Z\"{u}chtungsselektion$ erst dann eingesetzt werden sollen, wenn die P.J.-Pflanzen mehr als 20 Nodien ausgebildet haben.

  • PDF

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF