• 제목/요약/키워드: U-shaped steel section

검색결과 18건 처리시간 0.023초

Interfacial shear resistance of angle shear connectors welded to concrete filled U-shaped CFS beam

  • Oh, Hyoung Seok;Shin, Hyeongyeop;Ju, Youngkyu;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.311-325
    • /
    • 2022
  • For multi-story structural systems, Korean steel industry has fostered development of a steel-concrete composite beam. Configuration of the composite beam is characterized by steel angle shear connectors welded to a U-shaped cold formed-steel beam. Effects of shear connector orientation and spacing were studied to evaluate current application of the angle shear connector design equation in AC495. For the study, interfacial shear resistance behavior was investigated by conducting 24 push-out tests and attuned using unreinforced push-out specimens. Interfacial shear to horizontal slip response was reported along with corresponding failure patterns. Pure shear connector strength was also evaluated by excluding concrete shear contribution, which was estimated in relation to steel beam-slab interface separation or interfacial crack width.

Investigation on the flexural behavior of an innovative U-shaped steel-concrete composite beam

  • Turetta, Maxime;Odenbreit, Christoph;Khelil, Abdelouahab;Martin, Pierre-Olivier
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.441-452
    • /
    • 2020
  • Within the French CIFRE research project COMINO, an innovative type of composite beam was developed for buildings that need fire resistance with no additional supports in construction stage. The developed solution is composed of a steel U-shaped beam acting as a formwork in construction stage for a reinforced concrete part that provides the fire resistance. In the exploitation stage, the steel and the reinforced concrete are acting together as a composite beam. This paper presents the investigation made on the load bearing capacity of this new developed steel-concrete composite section. A full-scale test has been carried out at the Laboratory of Structural Engineering of the University of Luxembourg. The paper presents the configuration of the specimen, the fabrication process and the obtained test results. The beam behaved compositely and exhibited high ductility and bending resistance. The shear connection in the tension zone was effective. The beam failed by a separation between the slab and the beam at high deformations, excessive shear forces conducted to a failure of the stirrups in this zone. The test results are then compared with good agreement to analytical methods of design based on EN 1994 and design guidelines are given.

슬림 AU 합성보의 전단성능에 관한 실험연구 (Experimental Study on the Shear Capacity of Slim AU Composite Beam)

  • 이미향;오명호;김영호;정석창;김명한
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.99-105
    • /
    • 2017
  • The SLIM AU composite beam consists of U-shaped steel plate, A-shaped steel cap and infilled concrete. The bottom steel plate acts as tension bars, and the top steel cap takes roles of shear connector and compression bars in the conventional reinforced concrete section. In this paper the shear strength of this composite beam with closed steel section has been evaluated through the concentrated loading shear experiments. Test results under the symmetrical and asymmetrical loading conditions were compared with the predicted values based on the KBC 2016. The composite beam showed the greater shear strength capacities than those of the theoretical evaluation.

단부 보강에 따른 U-플랜지 트러스 보의 구조 내력에 관한 실험 연구 (Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam With Reinforced End by Steel Plates)

  • 오명호;김영호
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.31-38
    • /
    • 2020
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study, the details of delayed buckling of lattice members were developed through reinforcement of the end section, in order to improve structural capacity of U-flanged Truss Steel Beam. To verify the effects of these details, the simple beam experiment was conducted. The maximum capacity of all the specimens were determined by the buckling of the lattice. The vertical reinforced details of the ends with steel plates, rather than the details reinforced with steel bars, are confirmed to be a valid method for enhancing the structural capacity of the U-flanged Truss beam. In addition, U-flanged Truss Steel Beam with reinforced endings with steel plates can exhibit sufficient capacity of the lattice buckling by the formulae according to Korean Building Code (KBC, 2016) and Eurocode 3.

Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines

  • Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.347-359
    • /
    • 2020
  • The objective of this study is to experimentally scrutinize the axial performance of built-up concrete filled steel tube (CFT) columns composed of steel plates. In this case, the main parameters cross section types, compressive strength of filled concrete, and the effect of welding lines. Welded built-up steel box columns are fabricated by connecting two pieces of cold-formed U-shaped or four pieces of L-shaped thin steel plates with continuous penetration groove welding line located at mid-depth of stub column section. Furthermore, traditional square steel box sections with no welding lines are investigated for the comparison of axial behavior between the generic and build-up cross sections. Accordingly, 20 stub columns with thickness and height of 2 and 300 mm have been manufactured. As a result, welding lines in built-up specimens act as stiffeners because have higher strength and thickness in comparison to the plates. Subsequently, by increasing the welding lines, the load bearing capacity of stub columns has been increased in comparison to the traditional series. Furthermore, for specimens with the same confinement steel tubes and concrete core, increment of B/t ratio has reduced the ductility and axial strength.

세미슬림 AU 합성보의 시공 단계 안전성 평가 (Safety Evaluation of Semi-Slim AU Composite Beam During Construction)

  • 김영호;김도범;김대진;김명한
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.57-66
    • /
    • 2018
  • Recently various composite beams in which concrete is filled in the U-shaped steel plate have been developed for saving story height and reducing construction period. Due to the high flexural stiffness and strength, they are widely being used for the building with large loads and long spans. The semi-slim AU composite beam has proven to take highly improved stability compared to the existing composite beams, because it consists of the closed steel section by attaching cap-type shear connectors to the upper side of U-shaped steel plate. In this study the finite element analyses were performed to evaluate the safety of the AU composite beam with unconsolidated concrete which were sustained through the closed steel section during the construction phase. The analyses were performed on the two types of cross section applied to the fabrication of AU composite beams, and the results were compared to the those of 2-point bending tests. In addition, the flexural performance according to the space of intermittent cap-type shear connectors and the location of reinforcing steel bars for compression was comparatively investigated. Through the results of analytical studies, it is preferable to adopt the yield moment of AU composite beam for evaluating the safety in the construction phase, and to limit the space of intermittent shear connectors to 400 mm or less for the construction load.

콘크리트채움 U형 강재보 - 콘크리트 기둥 접합부의 내진성능 (Seismic Resistance of Concrete-filled U-shaped Steel Beam-to-RC Column Connections)

  • 황현종;박홍근;이철호;박창희;이창남;김형섭;김성배
    • 한국강구조학회 논문집
    • /
    • 제23권1호
    • /
    • pp.83-97
    • /
    • 2011
  • 본 논문에서는 콘크리트 채움 U형 강재보와 철근콘크리트 기둥으로 구성된 접합부의 내진 상세를 개발하였다. 접합부 내진성능을 평가하기 위하여 세 개의 보-기둥 접합부 실험체를 반복주기하중에 대하여 실험하였다. 보춤과 기둥 단면 형상을 실험 변수로 하였다. 합성보의 춤은 슬래브 두께를 포함하여 610mm, 710mm이며, 철근콘크리트 기둥은 사각단면과 원형단면이 사용되었다. 접합부를 보강시키기 위하여 사각단면 기둥과 원형단면 기둥에 각각 대각 철근과 외다이어프램 강판을 사용한 특수 상세가 사용되었다. 실험 결과 실험체는 강도와 변형능력, 에너지 소산에 있어서 우수한 성능을 보여주었다. 변형능력은 특수모멘트골조 기준인 4% 이상의 층간변위각을 발휘하였다.

The influence of strengthening the hollow steel tube and CFST beams using U-shaped CFRP wrapping scheme

  • Zand, Ahmed W. Al;Hosseinpour, Emad;Badaruzzaman, Wan Hamidon W.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.229-235
    • /
    • 2018
  • This study investigated the behaviour of the simply supported hollow steel tube (HST) beams, either concrete filled or unfilled when strengthened with carbon fibre reinforced polymer (CFRP) sheets. Eight specimens with varied tubes thickness (sections classification 1 and 3) were all tested experimentally under static flexural loading, four out of eight were filled with normal concrete (CFST beams). Particularly, the partial CFRP strengthening scheme was used, which wrapped the bottom-half of the beams cross-section (U-shaped wrapping), in order to use the efficiency of high tensile strength of CFRP sheets at the tension stress only of simply supported beams. In general, the results showed that the CFRP sheets significantly improved the ultimate strength and energy absorption capacities of the CFST beams with very limited improvement on the related HST beams. For example, the load and energy absorption capacities for the CFST beams (tube section class 1) were increased about 20% and 32.6%, respectively, when partially strengthened with two CFRP layers, and these improvements had increased more (62% and 38%) for the same CFST beams using tube class 3. However, these capacities recorded no much improvement on the related unfilled HST beams when the same CFRP strengthening scheme was adopted.

절곡 강판을 이용한 AU합성보 덮개형 강재앵커의 전단성능 평가 (Shear Capacity Evaluation of Steel Plate Anchors Using Folded Steel Plate in AU-composite Beam)

  • 임환택;최병정
    • 한국강구조학회 논문집
    • /
    • 제29권5호
    • /
    • pp.389-400
    • /
    • 2017
  • U형 합성보를 근간으로 층고절감과 공기단축을 위하여 경제적이고 효율적인 새로운 형상의 AU합성보를 연구하였다. 그러나 U형 단면의 특성상 상부가 개방되어 폭 고정을 위한 별도의 철물이 필요하며 U형 단면과 콘크리트 사이의 합성을 위하여 수평전단력에 대한 저항체가 필요하다. 이러한 단점을 보완하기 위하여 A형의 덮개형 강재앵커를 개발하였다. 본 연구에서는 A형의 덮개형 강재앵커에 대한 직접전단실험을 수행하고 수평전단력에 의한 내력을 평가하였다. 덮개형 강재앵커는 적용되는 데크플레이트의 형상에 따라 연속형과 단속형으로 구분하였다. 실험 결과, 연속형의 경우 스터드 앵커와 동일한 구조적 거동으로 강도와 변위가 스터드 앵커 이상으로 발휘하여 스터드앵커와 동일하게 평가할 수 있다. 단속형의 경우는 직접전단실험과 단순모델의 유한요해석을 통해 폭-높이비가 증가할수록 전단강도가 감소하였다. 이에 따라 스터드앵커의 전단강도식을 개선하여 성능평가식을 제안하였다.

콘크리트채움 U형 강재보-강재기둥 합성 내진접합부에 대한 주기하중 실험 (Cyclic Seismic Testing of Concrete-filled U-shaped Steel Beam-to-Steel Column Connections)

  • 박홍근;이철호;박창희;황현종;이창남;김형섭;김성배
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.337-347
    • /
    • 2011
  • 본 논문에서는 콘크리트 채움 U형 강재보와 강재 H단면 기둥으로 구성된 접합부의 내진 성능을 평가하였다. 접합부 내진성능을 평가하기 위하여 세 개의 보-기둥 접합부 실험체를 반복주기하중에 대하여 실험하였다. 합성보는 콘크리트 슬래브와 스터드를 이용하여 일체화 되었으며, 슬래브에는 부모멘트를 위한 철근이 배치되었다. 접합부 상세를 실험 변수로 하였으며, 보 접합부의 강화방안 및 약화방안, 합성효과의 정도를 고려하였다. 합성보의 춤은 슬래브 두께를 포함하여 600mm이며, 강재보와 슬래브의 철근은 H형강 기둥과 용접을 통해 접합하였다. 접합부 강화방안은 합성보 플랜지에 덧댐플레이트를 용접하였으며, 약화방안으로서 소성힌지 발생지점에 채움콘크리트 안에 스티로폼을 삽입하였다. 실험 결과 완전합성 실험체는 강도와 변형능력, 에너지 소산에 있어서 우수한 성능을 보여주었다. 변형능력은 특수모멘트골조 기준인 4% 이상의 회전각을 발휘하였다.