• Title/Summary/Keyword: U-shape wrapping

Search Result 3, Processing Time 0.015 seconds

Shear strengthening of reinforced concrete beams with rectangular web openings by FRP Composites

  • Abdel-Kareem, Ahmed H.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.281-300
    • /
    • 2014
  • This study presents the experimental results of twenty three reinforced concrete beams with rectangular web openings externally strengthened with Fiber Reinforced Polymers (FRP) composites bonded around openings. All tested beams had the same geometry and reinforcement details. At openings locations, the stirrups intercepted the openings were cut during fabrication of reinforcement cage to simulate the condition of inclusion of an opening in an existing beam. Several design parameters are considered including the opening dimensions and location in the shear zone, the wrapping configurations, and the amount and the type of the FRP composites in the vicinity of the openings. The wrapping configurations of FRP included: sheets, strips, U-shape strips, and U-shape strips with bundles of FRP strands placed at the top and sides of the beam forming a fan under the strips to achieve closed wrapping. The effect of these parameters on the failure modes, the ultimate load, and the beam stiffness were investigated. The shear contribution of FRP on the shear capacity of tested beams with web openings was estimated according to ACI Committee 440-08, Canadian Standards S6-06, and Khalifa et al. model and examined against the test results. A modification factor to account for the dimensions of opening chords was applied to the predicted gain in the shear capacity according to ACI 440-08 and CSA S6-06 for bonded Glass Fiber Reinforced Polymers (GFRP) around openings. The analytical results after incorporating the modification factor into the codes guidelines showed good agreement with the test results.

New Analysis Approach to the Characteristics of Excimer Laser Annealed Polycrystalline Si Thin Film by use of the Angle wrapping (엑시며 레이저에 의해 형성된 다결정 실리콘 박막의 Angle wrapping에 의한 깊이에 따른 특성변화)

  • Lee, Chang-U;Go, Seok-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.884-889
    • /
    • 1998
  • Amorphous silicon films of large area have been crystallized by a line shape excimer laser beam of one dimensional scanning with a gaussian profile in the scanning direction. In order to characterize the crystalline phase transition of thickness variables in excimer laser annealing(ELA), angle wrapping method was used. And also to characterize the residual stresses of crystalline phase transition in the case of angle wrapped-crystalline silicon on corning 7059 glass, polarized raman spectroscopies were measured at various laser energy density and substrate temperature. The residual stress varies from $9.0{\times}10^9$ to $9.9{\times}10^9$, and from $9.9{\times}10^9$ to $1.2{\times}10^10$dyne/${cm}^2$ of the substrate temperature at room temperature and varies from $8.1{\times}10^9$ to $9.0{\times}10^9$, and from $9.0{\times}10^9$ to $9.9{\times}10^9$dyne/${cm}^2$ of the substrate temperature at $400^{\circ}C$ as a function of direction from surface to substrate. According to the direction from the surface in liquid phase to the interface and from the interface to near the substrate in solid phase of recrystallized Si thin film, respectively. Thus, the stress is increased from(Liquid phase to solid phase) with phase transition.

  • PDF

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets (유리섬유시트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.677-684
    • /
    • 2007
  • This study investigates the failure mechanism of RC beams strengthened with GFRP (glass fiber reinforced polymer) sheets. After analyzing failure mechanisms, the various methods to prevent the debonding failures, such as increasing bonded length of GFRP sheets, U-shape wrappings and epoxy shear keys are examined. The bonded length of GFRP sheets are calculated based on the assumed bond strengths of epoxy resin. The U-shape wrappings are either adopted at the end or center of the CFRP sheets bonded to the beam soft. The epoxy shear keys are embedded to the beam soft to provide sufficient bond strength. The end U-wrappings and the center U-wrappings are conventional, while epoxy shear keys are new details developed in this study. A total six half-scale RC beams have been constructed and tested to investigate the effectiveness of each methods to prevent debonding failure of GFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings do not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear keys reached an ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal GFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In the case of shear keys, it was sufficient to prevent debonding and the beam was failed by GFRP sheets rupture.