• Title/Summary/Keyword: U-sectional beam

Search Result 9, Processing Time 0.026 seconds

Girder Section of Continuous Bridges Spliced by Partial Post-Tensioning (부분 포스트텐션닝 방법에 의해 연속화된 교량의 주형단면)

  • 이환우;곽효경;송영용
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.43-50
    • /
    • 2000
  • In this paper, a new splicing method was applied to design the girder section of bridges with the span length of 25m, 30m, 35m, 40m and 45m. A U-type precast prestressed section was also determined for each bridge. Additionally, the sectional area, beam depth and Guyon's efficiency factor of the spliced U-type sections in each span were analyzed in comparison with the present I-type PSC bridges. As a result, in spite of an increase of 31%∼50% in the sectional areas compared with the I-type precast girders, the spliced U-type the beam depth of the spliced U-type girder was designed as 2,050 mm compared with the I-type precast girder of 2,600mm in a 40m span bridge. The sectional efficiency factors of the spliced U-type sections were analyzed as 0.76∼0.99. It shows that the spliced U-type sections ar of a superior structural efficiency in contrast to the average sectional efficiency factor of 0.66 value in the I-type girders.

A Study on Strength Characteristics of Yieldable Steel Arch Supports (가축성 강재 지보의 강도특성에 관한 연구)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.261-274
    • /
    • 1998
  • The brief results of laboratory and field tests of yieldable steel arches are represented. The test supports were fabricated with three U-sectional beams which are 25.8 kg/m of Glocken profile. The structural analyses of semi-circular and arch supports were conducted to find out shape factor of U beam to be 1.35 and the location of 2nd plastic hinges. Load capacity of arch supports under crown loading were examined as a function of leg length. Yieldable characheristics of test supports were investigated with various bolting torque of connection part. Determination method of bolting torque were also studied. Finally, test supports were installed in-situ with torque of 21 kg .m, which showed a typical yielding procedure.

  • PDF

Characterization of Stitched Multiaxial Warp Knit Fabric Composites and Channel Beam Manufacturing (Stitched 다축경편 복합재료의 기계적 특성 및 U 빔 성형)

  • 변준형;이상관;엄문광;김태원;배성우;하동호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.280-283
    • /
    • 2002
  • In the manufacturing of large scale composite structures, the cost-effective processing and the enhancement of structural performance are critical. One of the most effective ways for this purpose is to use stitched multiaxial warp knitted (MWK) perform in the resin transfer molding process. This study reports the effect of stitching on the mechanical properties of MWK composites, and the feasibility processing of the thick U-beam structure utilizing the stitched preforms. Permeability of the preform, viscosity and cure property of the epoxy resin have been measured. The results of resin flow analysis has been used in determining the gate/vent locations of the RTM mold. Cross-sectional observation of the channel beam prototype demonstrated that the resin impregnation was almost complete, except for some surrounding area of stitched yarns.

  • PDF

Strengthening of RC beams with prefabricated RC U cross-sectional plates

  • Demir, Ali;Tekin, Muhammed;Turali, Tezcan;Bagci, Muhiddin
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.673-685
    • /
    • 2014
  • The topic of this study is to strengthen cracked beams with prefabricated RC U cross-sectional plates. The damaged beams were repaired by epoxy based glue. The repaired beams were strengthened using prefabricated plates. The strengthening plates were bonded to the bottom and side faces of the beams by anchorage rods and epoxy. The strengthened beams were incrementally loaded up to maximum load capacities. The experimental results were satisfactory since the load carrying capacities of damaged beams were increased approximately 76% due to strengthening. It was observed that strengthening plates had a dominant effect on the performance of beams in terms of both the post-elastic strength enhancement and the ductility. The experimental program was supported by a three-dimensional nonlinear finite element analysis. The experimental results were compared with the results obtained from the beam modeled with ANSYS finite element program.

Fabrication of Titanium Microchannels by using Ar+ Laser-assited Wet Etching (레이저 유도에칭을 이용한 티타늄 미세채널 제조)

  • 손승우;이민규;정성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.709-713
    • /
    • 2004
  • Characteristics of laser-assisted wet etching of titanium in phosphoric acid were investigated to examine the feasibility of this method for fabrication of high aspect ratio microchannels. Laser power, number of scans, etchant concentration, position of beam waist and scanning speed were taken into consideration as the major process parameters exerting the temperature distribution and the cross sectional profile of etched channels. Experimental results indicated that laser power influences on both etch width and depth while number of scans and scanning speed mainly affect on the etch depth. At a low etchant concentration, the cross sectional profile of an etched channel becomes a U-shape but it gradually turns into a V-shape as the concentration increases. On the other hand, surface of the laser beam focus with respect to the sample surface is found to be a key factor determining the bubble dynamics and thus the process stability. It is demonstrated that metallic microchannels with different cross sectional profiles can be fabricated by properly controlling the process parameters. Microchannels of aspect ratio up to 8 with the width and depth ranges of 8∼32 m and 50∼300 m, respectively, were fabricated.

  • PDF

Design Concept of Beams Reinforced by Deformed Bars and Non-Prestressed Strands in Combination (비긴장강연선과 철근이 혼용된 보의 설계방안)

  • Noh, Sam-Young;Jo, Min-Joo;Kim, Jong-Sung;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.18-29
    • /
    • 2013
  • A new precast concrete (PC) beam and column connection system using non-prestressed wire strands was recently developed. The system is composed of one unit of two-storied PC-column and PC-beams with U-shaped ends. The connection part of the column and beams is reinforced by deformed bars and non-prestressed wire strands in combination for the improvement of workability. Structural performance of this system was verified by several experimental studies. The purpose of this study is developing a design concept of the beam reinforced by deformed bars and non-prestressed wire strands in combination, in terms of the cross-sectional analysis, based on the preceded experiment. A minimum and maximum reinforcement ratio and the calculation formula for the strength of flexural member reinforced by reinforcements having different yield strengths are derived based on KBC2009. Under consideration existing research results for the application of high strength reinforcement bars, the design yield strength of the non-prestressed wire strand is suggested. An example for the cross section design, satisfying the serviceability requirements, demonstrates the applicability of the design concept developed in the study.

고효율 LED 제작을 위한 비,반극성 GaN의 성장 및 결함 분석

  • Gong, Bo-Hyeon;Kim, Dong-Chan;Kim, Yeong-Lee;An, Cheol-Hyeon;Bae, Yeong-Suk;U, Chang-Ho;Seo, Dong-Gyu;Nam, Ok-Hyeon;Yu, Geun-Ho;Jang, Jong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.172-172
    • /
    • 2009
  • In this study, we presented comparative discrimination methods to identify various line and planar defects observed in nonpolar a-GaN epilayers on r-sapphire substrates. Unlike the case of conventional c-GaN, which is dominated by perfect threading dislocations, systematic identification of undistinguishable defects using transmission electron microscopy (TEM) is necessary to suppress the propagation of defects in nonpolar GaN epilayers. Cross-sectional TEM images near the [0001] zone axis revealed that perfect mixed and pure screw type dislocations are visible, while pure edge, partial dislocations, and basal stacking faults (BSFs) are not discernible. In tilted cross-sectional TEM images along the [$1\bar{2}10$] zone axis, the dominant defects were BSFs and partial dislocations for the $g=10\bar{1}0$ and 0002 two-beam images, respectively. From plan view TEM images taken along the [$11\bar{2}0$] axis, it was found that the dominantpartial and perfect dislocations were Frank-Shockley with b=${\pm}1/6$<$20\bar{2}3$> and mixed type without an 1 component including b=${\pm}1/3$<$1\bar{2}10$> and ${\pm}1/3$<$\bar{2}110$>, respectively. Prismatic stacking faults were observed as inclined line contrast near the [0001] zone axis and were visible as band contrast in the two-beam images along the [$1\bar{2}10$] and [$11\bar{2}0$] zone axes.

  • PDF

Comparison of accuracy between panoramic radiography, cone-beam computed tomography, and ultrasonography in detection of foreign bodies in the maxillofacial region: an in vitro study

  • Abdinian, Mehrdad;Aminian, Maedeh;Seyyedkhamesi, Samad
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • Objectives: Foreign bodies (FBs) account for 3.8% of all pathologies of the head and neck region, and approximately one third of them are missed on initial examination. Thus, FBs represent diagnostic challenges to maxillofacial surgeons, rendering it necessary to employ an appropriate imaging modality in suspected cases. Materials and Methods: In this cross-sectional study, five different materials, including wood, metal, glass, tooth and stone, were prepared in three sizes (0.5, 1, and 2 mm) and placed in three locations (soft tissue, air-filled space and bone surface) within a sheep's head (one day after death) and scanned by panoramic radiography, cone-beam computed tomography (CBCT), and ultrasonography (US) devices. The images were reviewed, and accuracy of the detection modalities was recorded. The data were analyzed statistically using the Kruskal-Wallis, Mann-Whitney U-test, Friedman, Wilcoxon signed-rank and kappa tests (P<0.05). Results: CBCT was more accurate in detection of FBs than panoramic radiography and US (P<0.001). Metal was the most visible FB in all of modalities. US was the most accurate technique for detecting wooden materials, and CBCT was the best modality for detecting all other materials, regardless of size or location (P<0.05). The detection accuracy of US was greater in soft tissue, while both CBCT and panoramic radiography had minimal accuracy in detection of FBs in soft tissue. Conclusion: CBCT was the most accurate detection modality for all the sizes, locations and compositions of FBs, except for the wooden materials. Therefore, we recommend CBCT as the gold standard of imaging for detecting FBs in the maxillofacial region.

Radiomorphometric analysis of edentulous posterior mandibular ridges in the first molar region: a cone-beam computed tomography study

  • Magat, Guldane
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.28-37
    • /
    • 2020
  • Purpose: The aim of our study was to determine the prevalence and degree of lingual concavities in the first molar region of the mandible to reduce the risk of perforating the lingual cortical bone during dental implant insertion. Methods: A total of 163 suitable cross-sectional cone-beam computed tomography images of edentulous mandibular first molar regions were evaluated. The mandibular morphology was classified as a U-configuration (undercut), a P-configuration (parallel), or a C-configuration (convex), depending on the shape of the alveolar ridge. The characteristics of lingual concavities, including their depth, angle, vertical location, and additional parameters, were measured. Results: Lingual undercuts had a prevalence of 32.5% in the first molar region. The mean concavity angle was 63.34°±8.26°, and the mean linear concavity depth (LCD) was 3.03±0.99 mm. The mean vertical distances of point P from the alveolar crest (Vc) and from the inferior mandibular border were 9.39±3.39 and 16.25±2.44, respectively. Men displayed a larger vertical height from the alveolar crest to 2 mm coronal to the inferior alveolar nerve (Vcb) and a wider LCD than women (P<0.05). Negative correlations were found between age and buccolingual width at 2 mm apical to the alveolar crest, between age and Vcb, between age and Vc, and between age and LCD (P<0.05). Conclusions: The prevalence of lingual concavities was 32.5% in this study. Age and gender had statistically significant effects on the lingual morphology. The risk of lingual perforation was higher in young men than in the other groups analyzed.