• 제목/요약/키워드: U-Net Block

검색결과 18건 처리시간 0.025초

Fast and Accurate Single Image Super-Resolution via Enhanced U-Net

  • Chang, Le;Zhang, Fan;Li, Biao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1246-1262
    • /
    • 2021
  • Recent studies have demonstrated the strong ability of deep convolutional neural networks (CNNs) to significantly boost the performance in single image super-resolution (SISR). The key concern is how to efficiently recover and utilize diverse information frequencies across multiple network layers, which is crucial to satisfying super-resolution image reconstructions. Hence, previous work made great efforts to potently incorporate hierarchical frequencies through various sophisticated architectures. Nevertheless, economical SISR also requires a capable structure design to balance between restoration accuracy and computational complexity, which is still a challenge for existing techniques. In this paper, we tackle this problem by proposing a competent architecture called Enhanced U-Net Network (EUN), which can yield ready-to-use features in miscellaneous frequencies and combine them comprehensively. In particular, the proposed building block for EUN is enhanced from U-Net, which can extract abundant information via multiple skip concatenations. The network configuration allows the pipeline to propagate information from lower layers to higher ones. Meanwhile, the block itself is committed to growing quite deep in layers, which empowers different types of information to spring from a single block. Furthermore, due to its strong advantage in distilling effective information, promising results are guaranteed with comparatively fewer filters. Comprehensive experiments manifest our model can achieve favorable performance over that of state-of-the-art methods, especially in terms of computational efficiency.

단일 ㄱ형강의 블록전단 파단 및 전단지체 현상 -고력볼트 3개 또는 4개로 접합된 단일 ㄱ형강- (Block Shear Rupture and Shear Lag of Single angle in Tension Joint -Single angle with three or four bolt connection-)

  • 이향하;심현주;이은택
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.565-574
    • /
    • 2004
  • 본 연구는 볼트개수 3개 또는 4개로 접합된 인장력을 받는 ㄱ형강의 블록전단 파단시, 전단지체 효과를 분석하여 AISC의 블록전단식과 순단면파단식을 비교 검토하였다. 볼트 3개 또는 4개로 접합된 실험체의 경우 순단면 파단과 같은 블록전단, 순단면 형태의 파단으로 파단되었다. 실험결과는 블록전단에 영향을 미치는 접합길이, 실험체의 두께, 감소계수 등을 변수로 분석하였다. 실험결과에 따라, 블록전단내력 산정시 Kulak의 제안한 감소계수 U를 계산해서 적용하는 것이 필요한 것으로 판단된다.

깊은 잔차 U-Net 구조를 이용한 실제 카메라 잡음 영상 디노이징 (Real-world noisy image denoising using deep residual U-Net structure)

  • 장영실;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.119-121
    • /
    • 2019
  • 부가적 백색 잡음 모델(additive white Gaussian noise, AWGN에서 학습된 깊은 신경만 (deep neural networks)을 이용한 잡음 제거기는 제거하려는 잡음이 AWGN인 경우에는 뛰어난 성능을 보이지만 실제 카메라 잡음에 대해서 잡음 제거를 시도하였을 때는 성능이 크게 저하된다. 본 논문은 U-Net 구조의 깊은 인공신경망 모델에 residual block을 결합함으로서 실제 카메라 영상에서 기존 알고리즘보다 뛰어난 성능을 지니는 신경망을 제안하다. 제안한 방법을 통해 Darmstadt Noise Dataset에서 PSNR과 SSIM 모두 CBDNet 대비 향상됨을 확인하였다.

  • PDF

Residual Multi-dilated convolution U-Net을 이용한 다중 심장 영역 분할 알고리즘 연구 (Multi-Class Whole Heart Segmentation using Residual Multi-dilated convolution U-Net)

  • 임상헌;최한승;배희진;정서경;정진교;이명숙
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.508-510
    • /
    • 2019
  • 본 연구에서는 딥 러닝을 이용하여 완전 자동화된 다중 클래스 전체 심장 분할 알고리즘을 제안하였다. 제안된 방법은 recurrent convolutional block과 residual multi-dilated block을 삽입하여 기존 U-Net을 개선한 인공신경망 모델을 사용하였다. 평가는 자동화 분석 결과와 수동 평가를 비교하였다. 그 결과 96.88%의 평균 DSC, 95.60%의 정확도, 97.00%의 recall을 얻었다. 이 실험 결과는 제안된 방법이 다양한 심장 구조에서 효과적으로 구분되어 수행되었음을 알 수 있다. 본 연구에서 제안된 알고리즘이 의사와 방사선 의사가 영상을 판독하거나 임상 결정을 내리는데 보조적 역할을 할 것을 기대한다.

Residual Multi-Dilated Recurrent Convolutional U-Net을 이용한 전자동 심장 분할 모델 분석 (Fully Automatic Heart Segmentation Model Analysis Using Residual Multi-Dilated Recurrent Convolutional U-Net)

  • 임상헌;이명숙
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권2호
    • /
    • pp.37-44
    • /
    • 2020
  • 본 논문에서는 딥 러닝 기반의 전-자동 심장 분할 알고리즘을 제안한다. 본 논문에서 제안하는 딥 러닝 모델은 기존 U-Net에 residual recurrent convolutional block과 residual multi-dilated convolutional block을 삽입하여 성능을 개선한 모델이다. 모델의 성능은 테스트 데이터 세트를 전-자동 분할한 결과와 영상의학 전문가의 수동 분할 결과를 비교하여 분석하였다. CT 영상에서 평균 96.88%의 DSC, 95.60%의 precision과 97.00%의 recall 결과를 얻었다. 분할된 영상은 3차원 볼륨 렌더링 기법을 적용하여 시각화한 후 관찰하여 분석할 수 있었다. 실험 결과를 통해 제안된 알고리즘이 다양한 심장 하부 구조를 분할하기에 효과적인 것을 알 수 있었다. 본 논문에서 제안하는 알고리즘이 전문의 또는 방사선사의 임상적 보조역할을 수행할 수 있을 것으로 기대한다.

A Triple Residual Multiscale Fully Convolutional Network Model for Multimodal Infant Brain MRI Segmentation

  • Chen, Yunjie;Qin, Yuhang;Jin, Zilong;Fan, Zhiyong;Cai, Mao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.962-975
    • /
    • 2020
  • The accurate segmentation of infant brain MR image into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is very important for early studying of brain growing patterns and morphological changes in neurodevelopmental disorders. Because of inherent myelination and maturation process, the WM and GM of babies (between 6 and 9 months of age) exhibit similar intensity levels in both T1-weighted (T1w) and T2-weighted (T2w) MR images in the isointense phase, which makes brain tissue segmentation very difficult. We propose a deep network architecture based on U-Net, called Triple Residual Multiscale Fully Convolutional Network (TRMFCN), whose structure exists three gates of input and inserts two blocks: residual multiscale block and concatenate block. We solved some difficulties and completed the segmentation task with the model. Our model outperforms the U-Net and some cutting-edge deep networks based on U-Net in evaluation of WM, GM and CSF. The data set we used for training and testing comes from iSeg-2017 challenge (http://iseg2017.web.unc.edu).

COVID-19 폐 CT 이미지 인식 (COVID-19 Lung CT Image Recognition)

  • 수징제;김강철
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.529-536
    • /
    • 2022
  • 지난 2년 동안 중증급성호흡기증후군 코로나바이러스-2(SARS-CoV-2)는 점점 더 많은 사람들에게 영향을 미치고 있다. 본 논문에서는 COVID-19 폐 CT 이미지를 분할하고 분류하기 위해서 서브코딩블록(SCB), 확장공간파라미드풀링(ASSP)와 어텐션게이트(AG)로 구성된 혼합 모드 특징 추출 방식의 새로운 U-Net 컨볼루션 신경망을 제안한다. 그리고 제안된 모델과 비교하기 위하여 FCN, U-Net, U-Net-SCB 모델을 설계한다. 제안된 U-Net-MMFE 는 COVID-19 CT 스캔 디지털 이미지 데이터에 대하여 atrous rate가 12이고, Adam 최적화 알고리즘을 사용할 때 다른 분할 모델에 비하여 94.79%의 우수한 주사위 분할 점수를 얻었다.

GAN 신경망을 통한 자각적 사진 향상 (Perceptual Photo Enhancement with Generative Adversarial Networks)

  • 궐월;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.522-524
    • /
    • 2019
  • In spite of a rapid development in the quality of built-in mobile cameras, their some physical restrictions hinder them to achieve the satisfactory results of digital single lens reflex (DSLR) cameras. In this work we propose an end-to-end deep learning method to translate ordinary images by mobile cameras into DSLR-quality photos. The method is based on the framework of generative adversarial networks (GANs) with several improvements. First, we combined the U-Net with DenseNet and connected dense block (DB) in terms of U-Net. The Dense U-Net acts as the generator in our GAN model. Then, we improved the perceptual loss by using the VGG features and pixel-wise content, which could provide stronger supervision for contrast enhancement and texture recovery.

3차원 탄성파자료의 층서구분을 위한 패치기반 기계학습 방법의 개선 (Improvements in Patch-Based Machine Learning for Analyzing Three-Dimensional Seismic Sequence Data)

  • 이동욱;문혜진;김충호;문성훈;이수환;주형태
    • 지구물리와물리탐사
    • /
    • 제25권2호
    • /
    • pp.59-70
    • /
    • 2022
  • 최근의 연구들을 통해 기계학습은 탄성파 해석 분야에 그 적용 범위를 확장하고 있으며, 탄성파 해석에서 중요한 탄성파 층서 구분을 수행하는 합성곱 신경망들의 개발도 수행되었다. 하지만 지도 학습의 경우 대량의 학습 자료가 필요하며, 비용과 시간의 한계로 탄성파 층서구분의 지도학습은 학습 자료의 부족이 문제가 될 수 있다. 이번 연구에서는 자료 부족 문제를 보완하기위해 탄성파 단면에 패치 분할과 자료증강을 적용하였다. 또한 패치 분할로 손실될 수 있는 공간정보를 제공하기 위해 깊이를 고려할 수 있는 인공 채널을 생성하여 추가하였다. 실험을 위한 학습 모델로 U-Net을 사용하였으며, 층서 구분을 위한 학습 자료가 제공되는 F3 block 자료를 이용하여 학습과 예측 결과에 대한 평가를 수행하였다. 분석 결과 자료증강과 인공 채널의 추가로 패치 기반의 층서 구분 학습 모델을 개선할 수 있음을 확인하였다.

MRU-Net: A remote sensing image segmentation network for enhanced edge contour Detection

  • Jing Han;Weiyu Wang;Yuqi Lin;Xueqiang LYU
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권12호
    • /
    • pp.3364-3382
    • /
    • 2023
  • Remote sensing image segmentation plays an important role in realizing intelligent city construction. The current mainstream segmentation networks effectively improve the segmentation effect of remote sensing images by deeply mining the rich texture and semantic features of images. But there are still some problems such as rough results of small target region segmentation and poor edge contour segmentation. To overcome these three challenges, we propose an improved semantic segmentation model, referred to as MRU-Net, which adopts the U-Net architecture as its backbone. Firstly, the convolutional layer is replaced by BasicBlock structure in U-Net network to extract features, then the activation function is replaced to reduce the computational load of model in the network. Secondly, a hybrid multi-scale recognition module is added in the encoder to improve the accuracy of image segmentation of small targets and edge parts. Finally, test on Massachusetts Buildings Dataset and WHU Dataset the experimental results show that compared with the original network the ACC, mIoU and F1 value are improved, and the imposed network shows good robustness and portability in different datasets.