• Title/Summary/Keyword: U-Mo/Al

Search Result 50, Processing Time 0.025 seconds

A Study on Sasang Constitutional Gene Selection Using DNA Chips by Multivariate Analysis (유전자 칩 및 다변량 분석방법을 이용한 사상체질 유전자 선별에 관한 연구)

  • Kim, Pan-Joon;Seo, Eun-Hee;Lee, Jung-Hwan;Ha, Jin-Ho;Choi, Hong-Sik;Jung, Tae-Young;Goo, Deok-Mo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.3
    • /
    • pp.131-144
    • /
    • 2006
  • 1. Objectives This research uses the DNA chip, which includes 16,383 gene code, and various statistic prediction way that shows objectification index for the objectification of constitution diagnosis. 2. Methods Drawing blood whose constitution is confirmed, and analyze its gene information by using 1.7k DNA chip to find the gene correlation through multivariate statistical method. 3. Results and Conclusions Distinctive genes such as AK001919, U09384, NM_001805, X99962, NM_004796, AK026738, AL050148, BC002538, AK027074, AK026219, AF087962, AL390142, NM_015372, AL157466, NM_002446, AK024523, NM_014706, NM_014746 and AL137544 were related to Taeumin; AL157448, NM_005957, NM_005656, NM_017548, AK027246, NM_003025, NM_012302 and NM_005905 were represented in Soeumin, while AK026503, AF147325, NM_002076, AF147307, AK001375, NM_003740, NM_005114, AB007890, NM_005505, NM_015900, NM_014936, Z70694, AB023154, U52076, NM_004360, NM_005835, NM_017528, AF087987, NM_014897, AK021720, NM_006420, AJ277915, AK002118 and AK021918 were for Soyangin. This study figured out the possibility to develop the prediction system by sorting each constitution's gene, and research each constitution's distinctive character of manifestation pattern.

  • PDF

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma;M.T. Saify;Sanjib Majumdar;Palash K. Mollick
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1855-1862
    • /
    • 2023
  • Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

Sedimentary Environments and Heavy Metallic Pollution at Shihwa Lake (시화호의 퇴적환경과 중금속오염)

  • Hyun, Sang-Min;Chun, Jong-Hwa;Yi, Hi-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.3
    • /
    • pp.198-207
    • /
    • 1999
  • Five core sediments acquired from the Lake Shihwa are analyzed for variations of sedimentary environment and heavy metal pollution after the Shihwa seawall construction. The depositional environment of the study area is divided into anoxic, oxic and mixed suboxic conditions based on the C/N ratio and C/S ratios of organic matters. Controlling factors for redox condition are the water depth and the difference in industrial effluents supply. Correlations among geochemical elements (Mn, U, Mo) show a distinctive difference and thus can be used as an indicator of redox condition. The content of Al, Ti are dependent on the sediment characteristics, and the contents of heavy metals (Cr, Ni, Cu, Zn, and Pb) indicate heavy metal pollution. The concentrations of heavy metals are higher near Shiswa-Banwol industrial complexies than the central part of Lake Shihwa. Especially, the accumulation of the heavy metal at the surface sediments near Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa.

  • PDF

Geochemical Behavior, Dispersion and Enrichment of Environmental Toxic Elements in Coaly Metapelites and Stream Sediments at the Hoenam Area, up the Taecheong Lake, Korea (대청호 상류, 회남일대에 분포하는 탄질 변성니질암과 하상 퇴적물의 환경유해원소에 관한 지화학적 거동, 분산 및 부화)

  • Lee, Chan Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.209-222
    • /
    • 1997
  • The Hoenam area, up the Taecheong lake, composed mainly of low grade coal-bearing metapelites within the Ogcheon Supergroup. These coal formations are developed discontinuously several hundred meters and swelling from 10 to 300 cm along the host metapelites. Although the formations have been mined for coal, but already mined out, and the formations were higher content (mean value of 42 samples) of environmental toxic elements as As (13 ppm). Ba (1.81 wt. %), Cd (2 ppm), Cr (188 ppm), Cu (87 ppm), Mo (214 ppm), Pb (25 ppm), Sb (3 ppm), Se (12 ppm), U (55 ppm), V (2124 ppm) and Zn (234 ppm) than the host metapelites and the NASC. The Al, Ti, Mg, K and Na contents in stream sediments derived from the Hando and Bugook mine area were highly concentrations than the samples from the Samseongjeil mine area. The mean value (wt. %) of Fe (10.07), Mn (0.15), Ca (0.84), P (0.18) and Ba (0.77) influenced by the Samseongjeil mine were higher than the other mine drainage sediments. The mean content (ppm) of environmental toxic elements in drainage sediments from the Samseongjeil mine were taken As (2083), Cu (447), Mo (202), Ni (720), Pb (42), U (250), V (1070) and Zn (2632), which are extremely high concentrations against NASC and EPA. Characteristics of elemental behavior and dispersion of the all toxic elements are the same as increased with increasing U, V, and Cu. Rare earth elements in the sediments are enriched with LREE (La, Ce and Nd) from the drainage on strong concentration of toxic elements. The pH of stream water is neutral, but pH of the sediments ranged from 4.92 to 6.93 (mean 6.22), those are slightly acid in the Hando mine area. Major elements in the host rocks at the Hoenam area are mostly depleted especially Ca, excepting Ti and Ba, normalized with NASC. The sediments were highly enriched of Ti, Fe, Mg, Mn and Ba, but depleted of Al, K, Ca, Na and P on the basis of host rocks and NASC. Minor and environmental toxic elements in the host rocks were strongly enriched all elements (As, Cd, Mo, Se, D, V and Zn), excepting Co, Ni and Sr. Enrichment index (mean value) about toxic elements (As, Cr, Cu, Fe, Ni, Pb and Zn) of the sediments in this area have taken 41.35 (Hando mine drainage; 2.73, Samseongjeil mine drainage; 113.14 and Bugook mine drainage; 8.19), those are seriously contaminated by environmental toxic elements.

  • PDF

Influences of the Irradiation of Intense Pulsed ion Beam (IPIB) on the Surface of Ni$_3$Al Base Alloy IC6

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Han, B.H.;Wang, Y.G.;Xue, J.M.;Zhang, H.T.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.92-96
    • /
    • 2002
  • In this paper, we treated the Ni$_3$Al based alloy samples with intense pulsed ion beams (IPIB) at the beam parameters of 250KV acceleration voltage, 100 - 200 A/cm$^2$ current density and 60 u pulse duration. We simulated the thermal-mechanical process near the surface of Ni$_3$Al based alloy with our STEIPIB codes. The surface morphology and the cross-section microstructures of samples were observed with SEM, the composition of the sample surface layer was determined by X-ray Energy Dispersive Spectrometry (XEDS) and the microstructure on the surface was observed by Transmission Electron Microscope (TEM). The results show that heating rate increases with the current density of IPIB and cooling rate reached highest value less than 150 A/cm$^2$. The irradiation of IPIB induced the segregation of Mo and adequate beam parameter can improve anti-oxidation properly of IC6 alloy. Some craters come from extraneous debris and liquid droplets, and some maybe due to the melting of the intersection region of interphase. Increasing the pulse number enlarges average size of craters and decreases number density of craters.

  • PDF

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

An Analysis on the Water Quality of Limestone Cave System in Danyang region (단양지역에 분포한 석회암동굴계의 수질에 대한 분석)

  • 임종호;홍시환
    • Journal of the Speleological Society of Korea
    • /
    • v.33 no.34
    • /
    • pp.7-22
    • /
    • 1993
  • 본 연구에서는 단양지역에 분포한 석회암동굴계의 수질에 대한 주요 원소와 미량 원소 그리고 오염실태를 살펴보았다. 풍화물에 존재하는 미량 원소가 기반암보다 수 배 내지 수 백배 이상 부하되어 있었다. TSD와 EC 등은 화강암의 지하수 보다 높은 경향이 있었고 pH는 중성 내지 알칼리성이었다. Ca와 Mg은 기반암에서 용탈되어 지하수로 용존된 것으로 50ppm이상을 함유하고 있다. Fe과 K은 다른 주요 원소보다 현저히 낮은 경향이 있었다. 주요 음이온인 F$^{-}$ , Cl$^{-}$ , NO$_3$$^{-}$ , SO$_4$$^{-}$ 등은 환경기준치 보다도 현저히 낮은 상태이며, 따라서 오염이 안된 상태로 볼 수 있다. 미량 원소중 Al, Sr, Ba등이 높은 반면에 Co, Mo, Sb, Cs, W, Pb, U, Mn 등은 매우 극소량으로 존재하는 것으로 나타났다. 연구지역 중 온달굴, 고수굴, 천동, 노동 등지는 오염이 거의 안된 상태로 매우 양호한 편이나 천동굴은 관광객으로 인하여 일부 원소가 오염되어 있는 실정이다.

  • PDF

The Study on the Ralationships between Productivity and Job Satisfaction in Small Group Activities -Korea and Japan Comparison-

  • Yoon, Jung-Mo
    • IE interfaces
    • /
    • v.1 no.2
    • /
    • pp.75-82
    • /
    • 1988
  • This paper studied on the relationships between productivity and job satisfaction in small group activities. The researches were practiced with the same method which prof. Rao of Babson university et al.(1987) did on autonomous work groups in U.S.A.. The researcher divided companies of Korea and Japan into similar small groups such as high productive groups and low productive groups in each country and analyzed their degree of job satisfaction. According to the result, high productive groups indicated higher degree of job satisfaction than low productive groups. In the case of Korea, besides activating QC circle activity, it is also necessary to equalize the difficulty of the works, or to set up the pay system taken the difficulty of the works into consideration. In the case of Japan, it is important to encourage good human relationships and member's cooperation and unity.

  • PDF

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

Chemical Stability Evaluation of Ceramic Materials for Liquid Cadmium Cathode (액체카드뮴음금용 세라믹 소재의 화학적 안정성 평가)

  • Ku, Kwang-Mo;Ryu, Hong-Youl;Kim, Seung-Hyun;Kim, Dae-Young;Hwang, Il-Soon;Sim, Jun-Bo;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • LCC (Liquid cadmium cathode) is used for electrowinning in pyroprocessing to recover uranium and transuranic elements simultaneously. It is one of the core technologies in pyroprocessing with higher proliferation resistance than a wet reprocessing because LCC-cell does not separate TRU from uranium. The crucible which holds the LCC is technically important because it should be nonconducting material to prevent deposition of metallic elements on the crucible outer surface. The chemical stability is also crucial factor to choose crucible material due to the strong reactivities of TRU and possible incorporation of Li metal during the operation. In this study, the chemical stabilities of four kinds of representative ceramic materials such as $Al_2O_3$, MgO, $Yl_2O_3$ and BeO were thermodynamically and experimentally evaluated at $500^{\circ}C$ with simulated LCC. The contact angle of LCC on ceramic materials was measured as function of time to predict chemical reactivity. $All_2O_3$ showed poorest chemical stability and the pores in BeO contributed to a decreases in contact angle. MgO and $Y_2O_3$ have superior chemical stability among the materials.