• Title/Summary/Keyword: U-Draw Bending

Search Result 15, Processing Time 0.02 seconds

Formulation of the Contact Damping and its Application to the Explicit Finite Element Method (접촉감쇠의 수식화 및 외연적 유한요소법에의 적용)

  • 이상욱;양동열;정완진
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.306-312
    • /
    • 1999
  • In the recent sheet metal forming simulations, it increases to adopt the dynamic explicit method for an effective computation and the elastoplastic formulation for stress recovery. It is inevitable in the dynamic explicit method that some noises occur, which sometimes partly spoil results of simulations. This phenomenon becomes severer when complicate contact conditions are included in simulations. In commercial dynamic codes, the concept of contact damping is introduced. However, the formulation process of it is not revealed well. In this paper, a contact damping method is formulated in order for effectively suppressing noises occurring due to complicated contact conditions. This is checked by analyzing a simple sheet metal stamping process (U-draw bending). From the computational results, it is shown that the contact damping can effectively control the noises due to contacts, especially when considering the sheet thickness, and help to develop more reliable internal stress states, which result in more realistic shapes after springbank.

  • PDF

Springback Analysis of High Strength Steel Using Taguchi Method (다구치 실험계획법을 이용한 고강도 강판의 스프링백 분석)

  • Jeon, Tae-Bo;Kim, Hyung-Jong
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.80-85
    • /
    • 2006
  • HSS (high strength steel) is widely applied to reduce the weight but improve the strength in automobiles. This research has been peformed to secure a methodology to accurately predict the springback of HSS for successful tool and process designs in sheet stamping operations. We first peformed U-draw bending test to evaluate the springback characteristic. We then evaluated forming and springback processes using the 1-row model of the finite element method. Based on the peformance measure and parameters selected, extensive analyses of the factor effects on the springback have been made using experimental design concepts. We specifically selected Taguchi's orthogonal array, $L_{18}(2^1{\times}3^7)$, and the optimal level combination of the factors have been drawn from the analysis.

  • PDF

A Numerical Simulation of Springback Analysis for Sheet Metal Forming (박판성형을 위한 탄성복원해석의 수치적 모사)

  • 김충식;정완진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.9-16
    • /
    • 1998
  • New program for springback analysis has been developed to predict the deformation of springback more accurately. Static implicit FEM is used to find out the static equilibrium after springback. The shell element with 6 dogrees of freedom and 4 nodes is carefully implemented to improve the accuracy and the compatibility between forming analysis and springback analysis. Co-rotational approach and Newton-Raphson nonlinear iteration are used to resolve the nonlinearity of large deformation. The benchmark results show that the developed program gives good predictions in comparison with experimental and other commercial S/W's results. As practical examples, U draw bending and S-rail problems are carried out by the developed program.

Application of the Taguchi Method to the Analysis of the Numerical Parameters Influencing Springback Characteristics (스프링백 특성에 영향을 미치는 수치변수의 분석을 위한 다구치 실험계획법의 응용)

  • Kim, Hyung-Jong;Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.211-218
    • /
    • 2000
  • It is desirable but difficult to predict springback quantitatively and accurately for successful tool and process design in sheet stamping operations. The result of springback analysis by the finite element method (FEM) is sensitively influenced by numerical factors such as blank element size, number of integration points, punch velocity, contact algorithm, etc. In the present work, a parametric study by Taguchi method is performed in order to evaluate the influence of numerical factors on the result of springback analysis quantitatively and to obtain the combination of numerical factors which gives the best approximation to experimental data. Since springback is determined by the residual stress after forming process, it is important to evaluate stress distribution accurately. The oscillation in the time history curve of stress obtained by the dynamic-explicit finite element method says that the stress solution at termination time is in very unstable state. Therefore, a variability study is also carried out in this study in order to assess the stability of implicit springback analysis starting from the stress solution by explicit forming simulation. The U-draw bending process, one of the NUMISHEET '93 benchmark problems, is adopted as an application model because it is most popular one for evaluating the springback characteristic.

  • PDF

Change in Springback Tendency during Forming of a Hat-type Product with High Strength Steel Using a Digital Servo Press (디지털 서보 프레스를 이용한 고강도강 성형제품의 스프링백 경향 변화)

  • Kang, K.H.;Kim, S.H.;Ro, H.C.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • In the current study, reduction of springback is quantified and the reasons for the reduction are investigated. The testing involved a digital servo motion applied to a U-draw bending to produce a hat-type product from high strength steels such as DP780 and DP980. The change in springback is compared between the constant speed motion and three kinds of servocontrolled motions during forming experiments. In order to predict the springback for the servo-controlled tool motion, a finite element method was utilized for the springback analysis considering a kinematic hardening model for the steel. The comparison of springback between the analysis and the experiments shows that they have similar tendencies. Also, the analysis results indicate that the springback reduction is greatly influenced by a decrease in the friction coefficient, which originates from the contact and detach phenomena between the tooling and the blank during the up-and-down motion of the upper die following the servo-controlled motion.