• Title/Summary/Keyword: Tyrosine residues

Search Result 85, Processing Time 0.026 seconds

Functional Analysis of the Heptasequence SPTSPTY in the Transcriptional Activation Domain of Rat Nuclear Factor 1-A

  • Hwang, Jung-Su;Son, Kyung-No;Rho, Hyune-Mo;Kim, Ji-Young
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.468-473
    • /
    • 1999
  • Nuclear Factor 1 (NF1) proteins are a family of transcriptional factors consisting of four different types: NF1-A, -B, -C, and -X. Some NF1 transcription factors contain a heptasequence motif, SPTSPSY, which is found as a repeat sequence in the carboxy terminal domain (CTD) of the largest subunit of RNA polymerase II. A similar heptasequence, SPTSPTY, is contained in rat liver NF1-A at a position between residues 469 and 475. In order to investigate the roles of the individual amino acids of the heptasequence of rat liver NF1-A in transcriptional activation, we systematically substituted single and multiple amino acid residues with alanine residue(s) and evaluated the transcriptional activities of the mutated NF1-A. Substitution of a single amino acid reduced transcriptional activity by 10 to 30%, except for the proline residue at position 473, whose substitution with alanine did not affect transcriptional activity. However, changes of all four serine and threonine residues to alanine or of the tyrosine residue along with the serine residue at position 469 to alanine reduced the activity to almost background levels. Our results indicate that multiple serine and threonine residues, rather than a single residue, may be involved in the modulation of the transcriptional activities of the factor. Involvement of the tyrosine residue is also implicated.

  • PDF

Analysis on the Amino Acid Distributions with Position in Transmembrane Proteins

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.745-758
    • /
    • 2005
  • This paper presents a statistical analysis on the position-specific distributions of amino acid residues in transmembrane proteins. A hidden Markov model segments membrane proteins to produce segmented regions of homogeneous statistical property from variable-length amino acids sequences. These segmented residues are analyzed by using chi-square statistic and relative-entropy in order to find position-specific amino acids. This analysis showed that isoleucine and valine concentrated on the center of membrane-spanning regions, tryptophan, tyrosine and positive residues were found frequently near both ends of membrane.

  • PDF

Tyrosine Phosphorylation of Paxillin May be Involved in Vascular Smooth Muscle Contraction

  • Fang, Lian-Hua;Cho, Kyoung-Soo;Lee, Sang-Jin;Ahn, Hee-Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.211-217
    • /
    • 2000
  • Paxillin is a regulatory component of the complex of cytoskeletal proteins that link the actin cytoskeleton to the plasma membrane. However, the role of paxillin during smooth muscle contraction is unclear. We investigated a possible role for the membrane-associated dense plaque protein paxillin in the regulation of contraction in rat aortic vascular smooth muscle. The tyrosine phosphorylation of paxillin, which was increased by norepinephrine, reached a peak level after 1 min stimulation and then decreased with time. However, norepinephrine induced a sustained contraction that reached a steady state 30 min after application. Pretreatment with tyrphostin, an inhibitor of tyrosine kinase, inhibited the tyrosine phosphorylation of paxillin and also the contraction stimulated by norepinephrine. Both inhibitions were concentration-dependent, and the degree of correlation between them was high. These results show that, in rat aortic smooth muscle, tyrosine kinase(s) activated by norepinephrine may phosphorylate the tyrosine residues of paxillin, thereby providing a source of regulation during vascular smooth muscle contraction.

  • PDF

Deciphering the Role of Tyrosine Sulfation in Xanthomonas oryzae pv. oryzae Using Shotgun Proteomic Analysis

  • Park, Hye-Jee;Park, Chang-Jin;Bae, Nahee;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.266-272
    • /
    • 2016
  • A bacterial tyrosine sulfotransferase, RaxST, is required for activation of rice XA21-mediated immunity, and it catalyzes sulfation of tyrosine residues of Omp1X and RaxX in Xanthomonas oryzae pv. oryzae, a causal agent of bacterial blight in rice. Although RaxST is biochemically well-characterized, biological functions of tyrosine sulfation have not been fully elucidated. We compared protein expression patterns between the wildtype and a raxST knockout mutant using shotgun proteomic analysis. Forty nine proteins displayed a more than 1.5-fold difference in their expression between the wildtype and the mutant strains. Clusters of orthologous groups analysis revealed that proteins involved in cell motility were most abundant, and phenotypic observation also showed that the twitching motility of the mutant was dramatically changed. These results indicate that tyrosine sulfation by RaxST is essential for Xoo movement, and they provide new insights into the biological roles of RaxST in cellular processes.

Amino Acid Contents in the Hydrolysates of Fulvic Acids Extracted from Decomposing Plant Residues (부숙식물유체(腐熟植物遺體)에서 추출(抽出)한 Fulv 산(酸) 가수분해(加水分解) 용액중(溶液中)의 Amino 산함량(酸含量))

  • Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.188-192
    • /
    • 1990
  • Sixteen amino acids in the hydrolysates of fulvic acid fraction from 7 plant materials were determined. Analyzed amino acids were aspartic acid, glutamie acid, arginine, histidine, lysine, glycine, alanine, valine, leucine, isoleusine, phenylalanine, tyrosine, serine, threonine, proline, and methionine. Four crop residues, wild grass cuttings and forest tree litters were put under investigation. 1. The content of amino acids in fulvic acid fractions extracted after 90 days of compositing ranged from 0.15% to 0.53% by dry weight. The highest value was found in the fulvic acids of wild grass cuttings and the lowest in those of wheat straw, being equivalent to 1/5-1/31 of those found in humic acids. 2. The group of neutral amino acids shared the largest portion followed by acidic and basic amino acids. 3. Arginine was not detected in fulvic acid fractions from well decomposed residues. 4. Aromatic amino acids, phenylalanine and tyrosine, were virtually absent in fulvic acid fractions. 5. Glycine, glutamic acid and aspartic acid were the 3 major amino acids contained in fulvic acids of well decomposed residues. With glutamic acid and aspartic acid excluded, the decreasing order of concentration of amino acids was roughly in parallel with the increasing order of molecular weight.

  • PDF

Evidence of Multimeric Forms of HSP70 with Phosphorylation on Serine and Tyrosine Residues - Implications for Roles of HSP70 in Detection of GI Cancers

  • Dutta, Anand;Girotra, Mohit;Merchant, Nipun;Nair, Padmanabhan;Dutta, Sudhir Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5741-5745
    • /
    • 2013
  • Background: Heat-shock protein70 (HSP70) are intracellular protein chaperones, with emerging evidence of their association with various diseases. We have previously reported significantly elevated plasma-HSP70 (pHSP70) in pancreatic cancer. Current methods of pHSP70 isolation are ELISA-based which lack specificity due to cross-reactivity by similarities in the amino-acid sequence in regions of the protein backbone resulting in overestimated HSP70 value. Materials and Methods: This study was undertaken to develop a methodology to capture all isoforms of pHSP70, while further defining their tyrosine and serine phosphorylation status. Results: The methodology included gel electrophoresis on centrifuged supernatant obtained from plasma incubated with HSP70 antibody-coupled beads. After blocking non-specific binding sites, blots were immunostained with monoclonal-antibody specific for human-HSP70, phosphoserine and phosphotyrosine. Conclusions: Our novel immunocapture approach has distinct advantages over the commercially available methods of pHSP70 quantification by allowing isolation of molecular aggregates of HSP70 with additional ability to precisely distinguish phosphorylation state of HSP70 molecules at serine and tyrosine residues.

Nitrosative protein tyrosine modifications: biochemistry and functional significance

  • Yeo, Woon-Seok;Lee, Soo-Jae;Lee, Jung-Rok;Kim, Kwang-Pyo
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.194-203
    • /
    • 2008
  • Nitrosative modifications regulate cellular signal transduction and pathogenesis of inflammatory responses and neuro-degenerative diseases. Protein tyrosine nitration is a biomarker of oxidative stress and also influences protein structure and function. Recent advances in mass spectrometry have made it possible to identify modified proteins and specific modified amino acid residues. For analysis of nitrated peptides with low yields or only a subset of peptides, affinity 'tags' can be bait for 'fishing out' target analytes from complex mixtures. These tagged peptides are then extracted to a solid phase, followed by mass analysis. In this review, we focus on protein tyrosine modifications caused by nitrosative stresses and proteomic methods for selective enrichment and identification of nitrosative protein modifications.

Nitrated Proteome in Human Embryonic Stem Cells

  • Kang, Jeong Won;Hwang, Daehee;Kim, Kwang Pyo
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.85-90
    • /
    • 2016
  • Post-translational modifications (PTMs) of proteins regulate self-renewal and differentiation in embryonic stem cells (ESCs). Nitration of tyrosine residues of proteins in ESCs modulates their downstream pathways, which can affect self-renewal and differentiation. However, protein tyrosine nitration (PTN) in ESCs has been rarely studied. We reviewed 23 nitrated sites in stem cell proteins. Functional enrichment analysis showed that these nitrated proteins are involved in signal transduction, cell adhesion and migration, and cell proliferation in ESCs. Comparison between the nitrated and known phosphorylated sites revealed that 7 nitrated sites had overlapping phosphorylated sites, indicating functional links of PTNs to their associated signaling pathways in ESCs. Therefore, nitrated proteome provides a basis for understanding potential roles of PTN in self-renewal and differentiation of ESCs.