• Title/Summary/Keyword: Tyrosine Kinase B

Search Result 121, Processing Time 0.022 seconds

Up-Regulation of Interleukin-4 Receptor Expression by Interleukin-4 and CD40 Ligation via Tyrosine Kinase-Dependent Pathway

  • Kim, Hyun-Il;So, Eui-Young;Yoon, Suk-Ran;Han, Mi-Young;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.83-88
    • /
    • 1998
  • Recently a B cell surface molecule, CD40, has emerged as a receptor mediating a co-stimulatory signal for B cell proliferation and differentiation. To investigate the mechanism of synergy between interleukin-4 (IL-4) and CD40 ligation in B cell activation, we have examined the effect of CE40 cross-linking on the IL-4 receptor expression in human B cells using anti-CE40 antibody. We observed that IL-4 and anti-CD40 both induce IL-4 receptor gene expression with a rapid kinetics resulting in a noticeable accumulation of IL-4 receptor mRNA within 4 h. While IL-4 caused a dose-dependent induction of surface IL-4 receptor expression, the inclusion of anti-CD40 in the IL-4-treated culture, further up-regulated the IL-4-induced IL-4 receptor expression as analyzed by flow cytometry. Pretreatment of B cells with inhibitors of protein tyrosine kinase (PTK) resulted in a significant inhibition of both the IL-4- and anti-CD40-induced IL-4 receptor mRNA levels, while protein kinase C (PKC) inhibitors had no effects. These results suggest that IL-4 and CD40 ligation generate B cell signals, which via PTK-dependent pathways, lead to the synergistic induction of IL-4 receptor gene expression. The rapid induction of IL-4 receptor gene expression through the tyrosine kinase-mediated signal transduction by B cell activating stimuli, would provide cells capacity for an efficient response to IL-4 in the early phase of IL-4 action, and may in part constitute the molecular basis of the reported anti-CD40 co-stimulatory effect on the IL-4-induced response.

  • PDF

Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma

  • Chang, Yoon Soo;Choi, Chang-Min;Lee, Jae Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.248-256
    • /
    • 2016
  • Somatic mutations that lead to hyperactivation of epidermal growth factor receptor (EGFR) signaling are detected in approximately 50% of lung adenocarcinoma in people from the Far East population and tyrosine kinase inhibitors are now the standard first line treatment for advanced disease. They have led to a doubling of progression-free survival and an increase in overall survival by more than 2 years. However, emergence of resistant clones has become the primary cause for treatment failure, and has created a new challenge in the daily management of patients with EGFR mutations. Identification of mechanisms leading to inhibitor resistance has led to new therapeutic modalities, some of which have now been adapted for patients with unsuccessful tyrosine kinase inhibitor treatment. In this review, we describe mechanisms of tyrosine kinase inhibitor resistance and the available strategies to overcoming resistance.

Effects of Protein Kinase Inhibitors on Melanin Production in B16 Melanoma Cells Stimulated via Cyclic AMP-dependent Pathway (B16 Melanoma 세포에서 Protein Kinase 억제제들이 Cyclic AMP 경로를 통한 멜라닌 생성에 미치는 영향)

  • 차상복;조남영;윤미연;임혜원;김경원;박영미;이지윤;이진희;김창종
    • YAKHAK HOEJI
    • /
    • v.47 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • To investigate the effect of protein kinase on melanin production via cAMP-dependent pathway, we measured the melanin amount and tyrosinase activity in B16 melanoma cells stimulated by alpha-melanocyte stimulating hormone (MSH), forskolin and 8-Br-cAMP. MSH, forskolin and 8-Br-cAMP significantly increased both melanin production and tyrosinase activity in B16 cells. Melanin production and tyrosinase activity by MSH are significantly inhibited by cyclic AMP-dependent protein kinase inhibitor (KT5720) and protein kinase C down-regulation treated with PMA. Bisindolmaleimide (1$\mu$M), protein kinase C inhibitor, significantly inhibited melanin production and tyrosinase activity stimulated by MSH, forskolin and 8-Br-cAMP with the following order of potency: MSH>forskolin>8-Br-cAMP. Tyrosine kinase inhibitor, genistein and DHC, significantly inhibited both, but the inhibitory effect was more potent in 8-Br-cAMP-stimulated B16 cells than MSH-stimulated cells. NFkB inhibitor (parthenolide) significantly inhibited melanin production and tyrosinase activity. Neither melanin production nor tyrosinase activity induced by MSH, forskolin and 8-Br-cAMP were affected by KN-62 (calmodulin-dependent protein kinase II inhibitor), PD098059 (mitogen-activated protein kinase inhibitor, MAPKK) and worthmannin (phosphatidylinositol 3-kinase inhibitor). These results suggest that both protein kinase C and tyrosine kinase are involved in melanin production by cyclic AMP-dependent pathway and NFkB pathway may play an important role in cyclic AMP-dependent melanin production in B16 melanoma cells.

Inulin stimulates NO synthesis via activation of PKC-$\alpha$ and protein tyrosine kinase, resulting in the activation of NF-$textsc{k}$B by IFN-ν-primed RAW 264.7 cells

  • Koo, Hyun-Na;Hong, Seung-Heon;Kim, Hyung-Min
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.78-78
    • /
    • 2003
  • Inulin, an active component of Chicorium intybus root, has been shown to stimulate the growth of bifidobacteria, and inhibit colon carcinogenesis. NO mediates a number of the host-defense functions of activated macrophages, including antimicrobial and tumoricidal activity. We examined the effect of inulin on the synthesis of NO in RAW 264.7 cells. Inulin alone had no effect, whereas inulin with IFN-ν synergistically increased the NO production and inducible NO synthase (iNOS) expression in RAW 264.7 cells. Synergy between IFN-ν and inulin was mainly dependent on inulin-induced TNF-${\alpha}$ secretion. Also, protein kinase C (PKC)-${\alpha}$ was involved in the inulin-induced NO production. Inulin-mediated NO production was inhibited by the protein tyrosine kinase (PTK) inhibitor, tyrphostin AG126. Since iNOS gene transcriptions have been shown to be under the control of the NF -$\kappa$B/Rel family of transcription factors, we assessed the effect of inulin on NF -$\kappa$B/Rel using an EMSA. Inulin produced strong induction of NF-$\kappa$B/Rel binding, whereas AP-l binding was slightly induced in RAW 264.7 cells. Inulin stimulated phosphorylation and degradation of I$\kappa$B-${\alpha}$. These results suggest that in IFN-ν-primed RAW 264.7 cells inulin might stimulate NO synthesis via activation of PKC-${\alpha}$ and PTK, resulting in the activation of NF-$\kappa$B.

  • PDF

Co-Expression of Protein Tyrosine Kinases EGFR-2 and $PDGFR{\beta}$ with Protein Tyrosine Phosphatase 1B in Pichia pastoris

  • Pham, Ngoc Tu;Wang, Yamin;Cai, Menghao;Zhou, Xiangshan;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.152-159
    • /
    • 2014
  • The regulation of protein tyrosine phosphorylation is mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) and is essential for cellular homeostasis. Co-expression of PTKs with PTPs in Pichia pastoris was used to facilitate the expression of active PTKs by neutralizing their apparent toxicity to cells. In this study, the gene encoding phosphatase PTP1B with or without a blue fluorescent protein or peroxisomal targeting signal 1 was cloned into the expression vector pAG32 to produce four vectors. These vectors were subsequently transformed into P. pastoris GS115. The tyrosine kinases EGFR-2 and $PDGFR{\beta}$ were expressed from vector pPIC3.5K and were fused with a His-tag and green fluorescent protein at the N-terminus. The two plasmids were transformed into P. pastoris with or without PTP1B, resulting in 10 strains. The EGFR-2 and $PDGFR{\beta}$ fusion proteins were purified by $Ni^{2+}$ affinity chromatography. In the recombinant P. pastoris, the PTKs co-expressed with PTP1B exhibited higher kinase catalytic activity than did those expressing the PTKs alone. The highest activities were achieved by targeting the PTKs and PTP1B into peroxisomes. Therefore, the EGFR-2 and $PDGFR{\beta}$ fusion proteins expressed in P. pastoris may be attractive drug screening targets for anticancer therapeutics.

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

  • Cho, Young-Chang;Kim, Ba Reum;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.584-589
    • /
    • 2017
  • Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-${\alpha}$, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-${\alpha}$. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of ${\kappa}B$ ($I{\kappa}B$)-kinase ${\beta}$ ($IKK{\beta}$) at Ser177/181. This dephosphorylation led to the stabilization of $I{\kappa}B{\alpha}$ and inhibition of NF-${\kappa}B$ activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-$IKK{\beta}$ and inhibiting NF-${\kappa}B$ signaling.

A Cipadesin Limonoid and a Tirucallane Triterpene from the Fruit of Sandoricum koetjape and their Inhibitory Properties against Receptor Tyrosine Kinases

  • Rachmadhaningtiyas, Dyah Ayu;Heliawati, Leny;Hermawati, Elvira;Syah, Yana Maolana
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.134-139
    • /
    • 2021
  • A new cipadesin limonoid, i.e. 3-epi-cipadonoid C (1), and a new tirucallane triterpene, i.e. hispidol B 3-palmitate (3), have been isolated from the seeds and fruit peels extract of Sandoricum koetjape, respectively. Along with these compounds the known limonoid, cipaferen G (2), and two pentacyclic triterpenes, bryonolic (4) and bryononic (5) acids, were also isolated. The strucrures of the new compounds were elucidated by the analysis of NMR and mass spectral data. Compounds 1 - 5 were evaluated as the inhibitor of receptor tyrosine kinases (EGFR, Epidermal Growth Factor Receptor; HER2, HER4, Human Epidermal growth factor Receptor 2, -4; IGFR, Insulin-like Growth Factor Receptor; InsR, Insulin Receptor; KDR, Kinase insert Domain Receptor; PDGFRα, and PDGFRβ, Platelet-Derived Growth Factor Receptor-α and -β). The results showed only 1 and 3 that have weak activity against InsR.

Molecular Mechanisms of Neutrophil Activation in Acute Lung Injury (급성 폐손상에서 호중구 활성화의 분자학적 기전)

  • Yum, Ho-Kee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.6
    • /
    • pp.595-611
    • /
    • 2002
  • Akt/PKB protein kinase B, ALI acute lung injury, ARDS acute respiratory distress syndrome, CREB C-AMP response element binding protein, ERK extracelluar signal-related kinase, fMLP fMet-Leu-Phe, G-CSF granulocyte colony-stimulating factor, IL interleukin, ILK integrin-linked kinase, JNK Jun N-terminal kinase, LPS lipopolysaccharide, MAP mitogen-activated protein, MEK MAP/ERK kinase, MIP-2 macrophage inflammatory protein-2, MMP matrix metalloproteinase, MPO myeloperoxidase, NADPH nicotinamide adenine dinucleotide phosphate, NE neutrophil elastase, NF-kB nuclear factor-kappa B, NOS nitric oxide synthase, p38 MAPK p38 mitogen activated protein kinase, PAF platelet activating factor, PAKs P21-activated kinases, PMN polymorphonuclear leukocytes, PI3-K phosphatidylinositol 3-kinase, PyK proline-rich tyrosine kinase, ROS reactive oxygen species, TNF-${\alpha}$ tumor necrosis factor-a.

Studies on the Activation Mechanism of c-src Protein Tyrosine Kinase by Ginsenoside-Rgl

  • Hong, Hee-Youn;Yoo, Gyung-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.133-139
    • /
    • 1998
  • We have studied an activation mechanism of $pp60^{c-src}$ protein tyroslne kinase (PTK) by ginsenoside-$Rg_1$ (G-$Rg_1$ ) in NIH(pMcsrc/foc)B c-src overexpressor cells. It was previously reported that G--$Rg_1$ stimulated the activation of c-src kinase at 20 pM with a 18 hr-incubation, increasing the activity by 2-4-fold over that of untreated control, and this effect was blocked by treatments of in- hibitors of either protein synthesis (cycloheximide) or RNA synthesis (actinomycin D) (Hong, H.Y. et at. Arch. Pharm. Res. 16, 114 (1993)). However, an amount of c-src protein itself in wild-type cells was not changed by G-$Rg_1$. When the cells mutated at one or two tyrosine residue(s) (Y416/527) that are important sites to regulate the kinase activity were treated with G-$Rg_1$, increases both in the activity of c-src kinase and in the expression of the protein were not observed. In addition, removal of extracellular calcium ion by EGTA or inhibition of PKC by H-7 canceled the G-$Rg_1$-induced activation of the kinase. Although the activation was little affected by G-$Rg_1$ with a calcium ionophore A23187, it was synergistically stimulated by treatment of G-Rgl and PMA, a PKC activator. Taken together, these results suggest that the activation of c-src kinase by G-$Rg_1$ is caused by an increase in the specific activity of the kinase, but not in amount of it, and is involved with both collular calcium ion and PKC. Further the increase in the specific activity of c-src kinase may result from altered phosphorylation at tyro-416 and -527.

  • PDF

Tyrphostin ErbB2 Inhibitors AG825 and AG879 Have Non-specific Suppressive Effects on gp130/ STAT3 Signaling

  • Lee, Hyun-Kyoung;Seo, In-Ae;Lee, Sang-Hwa;Seo, Su-Young;Kim, Kyung-Sup;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.281-286
    • /
    • 2008
  • Although the interaction between gp130 and the ErbB family has frequently been shown in cancer cells, the mechanism of this interaction remains unclear and controversial. In the present study, we found that specific tyrphostin inhibitors of ErbB2 (AG825 and AG879), but not ErbB1 inhibitor (AG1478), suppressed IL-6-induced tyrosine phosphorylation of STAT3 in schwannoma cells. However, biochemical evidence for transactivation of ErbB2 by IL-6 was not observed. Additionally, the inhibition of ErbB2 expression, with either a specific RNAi or transfection of an ErbB2 mutant lacking the intracellular domain did not inhibit the IL-6-induced tyrosine phosphorylation of STAT3. Thus, it seems that tyrphostins, which are known as specific inhibitors of the ErbB2 kinase, may have non-specific suppressive effects on the IL-6/STAT3 pathway.