• 제목/요약/키워드: Tyrosine

검색결과 1,678건 처리시간 0.026초

Characterization of Thermostable Tyrosine Phenol-Lyase from an Obligatory Symbiotic Thermophile, Symbiobacterium sp. SC-1

  • Lee, Seung-Goo;Hong, Seung-Pyo;Kwak, Mi-Sun;Esaki, Nobuyoshi;Sung, Moon-Hee
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.480-485
    • /
    • 1999
  • Tyrosine phenol-lyase of thermophilic Symbiobacterium sp. SC-1, which is obligately and symbiotically dependent on thermophilic Bacillus sp. SK-1, was purified and characterized. The enzyme is composed of four identical subunits and contains approximately 1 mol of pyridoxal 5'-phosphate (PLP) per mol subunit as a cofactor. The enzyme showed absorption maxima at 330 and 420 nm, and lost this absorption profile by treatment with phenylhydrazine. The apparent dissociation constsnt, $K'_D$, for PLP was determined with the apoenzyme to be about $1.2\;{\mu}M$. The isoelectric point was 4.9. The optimal temperature and pH for the $\alpha,\beta$-elimination of L-tyrosine were found to be $80^{\circ}C$ and pH 8.0, respectively. The substrate specificity of the enzyme was very broad: L-amino acids including L-tyrosine, 3,4-dihydroxyphenyl-L-alanine (L-DOPA), L-cysteine, L-serine, S-methyl-L-cysteine, $\beta$-chloro-L-alanine, and S-(o-nitrophenyl)-L-cysteine all served as substrates. D-Tyrosine and D-serine were also decomposed into pyruvic acid and ammonia at rates of 7% and 31% relative to their corresponding L-enantiomers, respectively. D-Alanine, which was inert as a substrate in a, $\beta$-elimination, was the only D-amino acid racemized by the enzyme. The $K_m$ values for L-tyrosine, L-DOPA, S-(o-nitrophenyl)-L-cysteine, $\beta$-chloro-L-alanine, and S-methyl-L-cysteine were 0.19, 9.9, 0.36, 12, and 5.5 mM, respectively.

  • PDF

Streptozotocin-유발 당뇨쥐의 시상하부에서 Norepinephrine 함량은 정상이나 In vivo Tyrosine Hydroxylase 활성은 감소함 (Decreased in vivo Tyrosine Hydroxylase Activities with Normal Norepinephrine Levels in Streptozotocin-Induced Diabetic Rat Hypothalamus)

  • 위명복;송동근;강병태;정전섭;최연식;박준형;김영희
    • 대한약리학회지
    • /
    • 제27권1호
    • /
    • pp.1-5
    • /
    • 1991
  • Streptozotocin(STZ)-유발 당뇨쥐에서 시상하부의 norepinephrine(NE) 대사를 기초 NE 함량, NE 교체율, in vivo tyrosine hydroxylase(TH) 활성을 그 지표로 하여 조사하였다. STZ (60 mg/kg, iv)로 당뇨를 유발한 후 4주까지 기초 NE 함량은 유의한 변화가 없었다. 그러나 당뇨유발 후 1주째에 측정한 NE 교체율은 대조치의 62%(p<0.01), in vivo TH 활성은 대조치의 34% (p<0.05)로 감소하였다. 이상의 결과로 본 실험에서 측정한 NE 대사의 세 지표 중에서 in vivo TH 활성이 STZ-유발 당뇨쥐의 시상하부 NE 대사의 변화를 가장 민감하게 반영하였다.

  • PDF

모래쥐 흑색질의 도파민성 신경세포의 분포와 미세구조 (Distribution and Ultrastructure of Dopaminergic Neurons in the Substantia Nigra of Mongolian Gerbil (Meriones unguiculates))

  • 최월봉;윤상선;고병문;조승묵;남성안;최창도
    • Applied Microscopy
    • /
    • 제27권4호
    • /
    • pp.461-472
    • /
    • 1997
  • The substantia nigra of the Mongolian gerbil was studies by tyrosine hydroxylase immunohistochemistry and immunoelectron microscopy with preembedding method. The purpose was to obtain information on the distribution and ultrastructure of the Tyrosine hydroxylase immunoreactive and dopaminergic neurons in the substantia nigra, in order to provide the necessary background for the gerbil. Large number of tyrosine hydroxylase immunoreactive neurons were located in the compact part of substantia nigra. Findings in the gerbil, compared to observations in the other species, included the presence of prominent bundles of tyrosine hydroxylase immunoreactive cytoplasmic processes passing in the dorsoventral direction from pars compacta into pars reticulata at middle and caudal levels of the substantia nigra, and the presence of a distinct tyrosine hydroxylase immunoreactive substantia nigra pars lateralis. Tyrosine hydroxylase immunoreactive neurons had well-developed cell organelles, especially rough endoplasmic reticulum, free ribosome and poly-ribosome, and showed the infoldings of the nuclear envelope. We anticipate that the present description of the cellular organization of the tyrosine hydroxylase immunoreactive dopaminergic area in the substantia nigra of gerbil will be useful for the animal experimental model of Parkinson's disease.

  • PDF

말초혈액 단핵구에 대한 내독소 자극의 신호 전달에서 Protein Kinase C와 Protein Tyrosine Kinase의 역할 (The Role of Protein Kinase C and Protein Tyrosine Kinase in the Signal Transduction Pathway of Stimulus Induced by Endotoxin in Peripheral Blood Monocyte)

  • 김재열;박재석;이귀래;유철규;김영환;한성구;심영수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제44권2호
    • /
    • pp.338-348
    • /
    • 1997
  • Background : Endotoxin, the component of outermembrane of gram negative organism, plays an important role in the initiation and amplification of inflammatory reaction by its effects on inflammatory cells. Until recently, there have been continuing efforts to delinate the mechanisms of the signal trasduction pathway of endotoxin stimuli on inflammatory cells. By uncovering the mechanisms of signal transduction pathway of endotoxin stimuli, we can expect to have tools to control the excessive inflammatory responses which sometimes may be fatal to the involved host. It was generally accepted that endotoxin exerts its inflammatory effects through inflammatory cytokines that are produced by endotoxin-stimulated inflammatory cells and there were some reports on the importance of protein kinase C and protein tyrosine kinase activation in the production of inflammatory cytokines by endotoxin So we evaluated the effect of pretreatment of protein kinase C inhibitors (H7, Staurosporin) and protein tyrosine kinase inhibitors(Herbimycin, Genistein) on the endotoxin-stimulated cytokines(IL-8 & TNF-$\alpha$) mRNA expression. Method : Peripheral blood monocytes were isolated from healthy volunteers by Ficoll-Hypaque density gradient method and purified by adhesion to 60mm Petri dishes. Endotoxin(LPS 100ng/ml) was added to each dishes except one control dish, and each endotoxin-stimulated dishes was preincubated with H7, Staurosporin(protein kinase C inhibitor), Herbimycin or Genistein(protein tyrosine kinase inhibitor) respectively except one dish. Four hours later the endotoxin stimulation, total RNA was extracted and Northern blot analysis for IL-8 mRNA and TNF-$\alpha$ mRNA was done. Result : Endotoxin stimulation increased the expression of IL-8 mRNA and TNF-$\alpha$ mRNA expression in human peripheral blood monocyte as expected and the stimulatory effect of endotoxin on TNF-$\alpha$ mRNA expression was inhibited by protein kinase C inhibitors(H7, Staurosporin) and protein tyrosine kinase inhibitors (Herbimycin, Genistein). The inhibitory effect of each drugs was increased with increasing concentration. The stimulatory effect of endotoxin on IL-8 mRNA was also inhibited by H7 and protein tyrosine kinase inhibitors (Herbimycin, Genistein) dose-dependently but not by Staurosporin. Conclusion : Protein kinase C and protein tyrosine kinase are involved in the endotoxin induced signal transduction pathway in human peripheral blood monocyte.

  • PDF

Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development

  • Lee, Jae-Ran
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.249-255
    • /
    • 2015
  • PTPRT/RPTPρ is the most recently isolated member of the type IIB receptor-type protein tyrosine phosphatase family and its expression is restricted to the nervous system. PTPRT plays a critical role in regulation of synaptic formation and neuronal development. When PTPRT was overexpressed in hippocampal neurons, synaptic formation and dendritic arborization were induced. On the other hand, knockdown of PTPRT decreased neuronal transmission and attenuated neuronal development. PTPRT strengthened neuronal synapses by forming homophilic trans dimers with each other and heterophilic cis complexes with neuronal adhesion molecules. Fyn tyrosine kinase regulated PTPRT activity through phosphorylation of tyrosine 912 within the membrane-proximal catalytic domain of PTPRT. Phosphorylation induced homophilic cis dimerization of PTPRT and resulted in the inhibition of phosphatase activity. BCR-Rac1 GAP and Syntaxin-binding protein were found as new endogenous substrates of PTPRT in rat brain. PTPRT induced polymerization of actin cytoskeleton that determined the morphologies of dendrites and spines by inhibiting BCR-Rac1 GAP activity. Additionally, PTPRT appeared to regulate neurotransmitter release through reinforcement of interactions between Syntaxin-binding protein and Syntaxin, a SNARE protein. In conclusion, PTPRT regulates synaptic function and neuronal development through interactions with neuronal adhesion molecules and the dephosphorylation of synaptic molecules. [BMB Reports 2015; 48(5): 249-255]

Enzymatic Characteristics of Biosynthesis and Degradation of Poly-$\beta$-hydroxybutyrate of Alcaligenes latus

  • Kim, Tae-Woo;Park, Jin-Seo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권6호
    • /
    • pp.425-431
    • /
    • 1996
  • The enzymatic characteristics of Alcaligenes latus were investigated by measuring the variations of various enzyme activities related to biosynthesis and degradation of poly-${\beta}$-hydroxybutyrate (PHB) during cultivation. All PHB biosynthetic enzymes, ${\beta}$-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase, were activated gradually at the PHB accumulation stage, and the PHB synthase showed the highest value among three enzymes. This indicates that the rate of PHB biosynthesis is mainly controlled by either ${\beta}$-ketothiolase or acetoacetyl-CoA reductase rather than PHB synthase. The enzymatic activities related to the degradation of PHB were also measured, and the degradation of PHB was controlled by the activity of PHB depolymerase. The effect of supplements of metabolic regulators, citrate and tyrosine, was also investigated, and the activity of glucose-6-phosphate dehydrogenase was increased by metabolic regulators, especially by tyrosine. The activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase were also activated by citrate and tyrosine, while the activity of PHB depolymerase was depressed. The increased rate and yield of PHB biosynthesis by metabolic regulators may be due to the increment of acetyl-CoA concentration either by the repression of the TCA cycle by citrate through product inhibition or by the activation of sucrose metabolism by the supplemented tyrosine.

  • PDF

Involvement of Protein Tyrosine Kinase in Stimulated Neutrophil Responses by Sodium Fluoride

  • Chung, Ki-Kwang;Han, Eun-Sook;Lee, Chung-Soo
    • BMB Reports
    • /
    • 제30권2호
    • /
    • pp.89-94
    • /
    • 1997
  • In this study, during the activation of neutrophil responses by sodium fluoride. involvement of protein tyrosine kinase was studied. Respiratory burst lysosomal enzyme release and elevation of $[Ca^{2+}]_i$stimulated by sodium fluoride in neutrophils were inhibited by protein kinase inhibitors, genistein and tyrphostin. The inhibitory effect of genistein and tyrphostin on superoxide and $H_{2}O_{2}$ production was less than that of protein kinase C inhibitors, staurosporine and H-7. Staurosporine and H-7 had little or no effect on the release of myeloperoxidase and acid phosphatase stimulated by sodium fluoride. EGTA and verapamil inhibited the elevation of $[Ca^{2+}]_i$ evoked by sodium fluoride. The inhibitory effect of staurosporine on the elevation of $[Ca^{2+}]_i$ was less than that of genistein. Phorbol 12-myristate 13-acetate (PMA)-stimulated superoxide production, which is sensitive to staurosporine, was further enhanced by genistein, whereas the stimulatory action of PMA on myeloperoxidase release was inhibited by genistein. A pretreatment of neutrophils with PMA signifcantly attenuated sodium fluoride-evoked elevation of $[Ca^{2+}]_i$ These results suggest that protein tyrosine kinase may be involved in the activation process of neutrophil responses due to direct stimulation of guanine nucleotide regulatory proteins. In neutrophil responses, PMA-stimulated neutrophils appear to show a different type of inhibition of protein tyrosine kinase.

  • PDF

Production of Exopolysaccharides by Lactococcus lactis subsp. cremoris MG1363 Expressing the eps Gene Clusters from Two Strains of Lactobacillus rhamnosus

  • Kang, Hye-Ji;LaPointe, Gisele
    • 한국미생물·생명공학회지
    • /
    • 제46권2호
    • /
    • pp.91-101
    • /
    • 2018
  • The aim of this study was to transfer the 18.5 kb gene clusters coding for 17 genes from Lactobacillus rhamnosus to Lactococcus lactis subsp. cremoris MG1363 in order to determine the effect of host on exopolysaccharide (EPS) production and to provide a model for studying the phosphorylation of proteins which are proposed to be involved in EPS polymerization. Lactobacillus rhamnosus RW-9595M and ATCC 9595 have 99% identical operons coding for EPS biosynthesis, produced different amounts of EPS (543 vs 108 mg/l). L. lactis subsp. cremoris MG1363 transformed with the operons from RW-9595M and ATCC 9595 respectively, produced 326 and 302 mg/l EPS in M17 containing 0.5% glucose. The tyrosine protein kinase transmembrane modulator (Wzd) was proposed to participate in regulating chain elongation of EPS polymers by interacting with the tyrosine protein kinase Wze. While Wzd was found in phosphorylated form in the presence of the phosphorylated kinase (Wze), no phosphorylated proteins were detected when all nine tyrosines of Wzd were mutated to phenylalanine. Lactococcus lactis subsp. cremoris could produce higher amounts of EPS than other EPS-producing lactococci when expressing genes from L. rhamnosus. Phosphorylated Wzd was essential for the phosphorylation of Wze when expressed in vivo.

Mutational Analysis of Two Conserved Active Site Tyrosine Residues in Matrilysin

  • Jaeho Cha
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.44-48
    • /
    • 1999
  • The ionization of tyrosine residue is known to be involved in the stabilization of transition-state in catalysis of astacin based upon the astacin-transition state analog structure. Two tyrosine residues, Tyr-216 and Tyr-219, are conserved in all MMPs related with astacin family, We replaced Tyr-216 and Tyr-219 into phenylalanine, respectively and the zinc binding properties, kinetic parameters, and pH dependence of each mutant are determined in order to examine the role of tyrosine residue in matrilysin catalysis. Both mutants contain two zinc atoms per mol of enzyme, indicating that either tyrosime does not affect the zinc binding property of the enzyme. Y216F and Y219F mutants are highly active and the kcat/Km values are only decreased 1.1-1.5-fold compared to the wild-type enzyme. The decrease in the activity of the mutants is essentially due to the increase in Km value. The pH dependencies of the kcat/Km values for both mutants are similar to the corresponding dependencies obtained with the wild type enzyme. The pKa values at the alkaline side of both mutants are not changed. These kinetic and pH dependence results indicate that the ionization of active site tyrosine residue of matrilysin is not reflected in the kinetics of peptide hydrolysin as catalyzed by astacin.

Antitumor activities of hypericin as a protein tyrosine kinase blocker

  • Kil, Kwang-Sup;Yum, Young-Na;Seo, Seung-Hoon;Lee, Kyung-Tae
    • Archives of Pharmacal Research
    • /
    • 제19권6호
    • /
    • pp.490-496
    • /
    • 1996
  • Naphtodianthrone hypericin produced a potent antitumor activity in vitro against several tumor cells. However, it did not show any cytotoxicity on normal cells such as Macaccus rheus monkey kidney cells (MA-104) and primary cultured rat hepatocytes up to $500{\mu}M$ concentration. Hypericin added to A431 human epidermoid carcinoma cell membrane inhibited the autophosphorylation of the epidermal growth factor (EGF) receptor and the tyrosine phosphorylation of RR-SRC peptide catalyzed by an EGF-receptor. Similarly, treatment of the A431 cells with hypericin inhibited the tyrosine phosphorylation of EGF-dependent endogenous EGF-receptor by western blotting analysis. Hypericin also inhibited the T cell PTK, $P56^{lck}$, in a dose-dependent fashion with an $IC_{50}=5{\mu}M$. The tyrosine phosphorylation, on RR-SRC peptide and EGF-induced receptor autophosphorylation, either in vitro or in intact cells was inhibited by hypericin at the same concentration as that in A431 cell proliferation. These data suggest that hypericin directly inhibits EGF-receptor and $P56^{lck}$ PTK activity in vitro and can mediate such action in vivo.

  • PDF