• Title/Summary/Keyword: Typhoons

Search Result 549, Processing Time 0.029 seconds

Application of deep learning method for decision making support of dam release operation (댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가)

  • Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1095-1105
    • /
    • 2021
  • The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.

Review of the Weather Hazard Research: Focused on Typhoon, Heavy Rain, Drought, Heat Wave, Cold Surge, Heavy Snow, and Strong Gust (위험기상 분야의 지난 연구를 뒤돌아보며: 태풍, 집중호우, 가뭄, 폭염, 한파, 강설, 강풍을 중심으로)

  • Chang-Hoi Ho;Byung-Gon Kim;Baek-Min Kim;Doo-Sun R. Park;Chang-Kyun Park;Seok-Woo Son;Jee-Hoon Jeong;Dong-Hyun Cha
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.223-246
    • /
    • 2023
  • This paper summarized the research papers on weather extremes that occurred in the Republic of Korea, which were published in the domestic and foreign journals during 1963~2022. Weather extreme is defined as a weather phenomenon that causes serious casualty and property loss; here, it includes typhoon, heavy rain, drought, heat wave, cold surge, heavy snow, and strong gust. Based on the 2011~2020 statistics in Korea, above 80% of property loss due to all natural disasters were caused by typhoons and heavy rainfalls. However, the impact of the other weather extremes can be underestimated rather than we have actually experienced; the property loss caused by the other extremes is hard to be quantitatively counted. Particularly, as global warming becomes serious, the influence of drought and heat wave has been increasing. The damages caused by cold surges, heavy snow, and strong gust occurred over relatively local areas on short-term time scales compared to other weather hazards. In particularly, strong gust accompanied with drought may result in severe forest fires over mountainous regions. We hope that the present review paper may remind us of the importance of weather extremes that directly affect our lives.

A Research on the Special Characteristics of the Changes of the Vegetations in the World Cup Park Landfill Slope District (월드컵공원 사면지구 식생현황 및 변화 특성 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Choi, Han-Byeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.4
    • /
    • pp.1-15
    • /
    • 2023
  • This research intended to reveal the special characteristics of the vegetation structure and the tendency of change of -landfill slope districts, which are reclaimed land, through an investigationsinto the presently existent vegetation and plant community structure of the World Cup Park landfill slope district. For the analysis of changes in vegetation, this study compared the results of field surveys in 1999, 2003, 2005, 2007, 2008, 2012, 2016, and 2021. For the investigation into the plant community structure, a field investigation was carried out in 2021 with six fixed investigation districts designated in 1999 as subjects. To analyze the change in the plant community structure, the past data on the population, the number of the species, and the species diversity by the layer in 2021 were compared and analyzed in the landfill slope district, which is reclaimed land. The changes of the vegetation distribution and the power had been affected by typhoons (Kompasu). Above the plantation foundation, which had been dry and poor, Salix koreensis, marsh woody plants that had formed the community, decreased greatly. The Robinia pseudoacacia community, after the typhoon in 2010, decreased in the number of species and population. Afterward, it showed a tendency to rebound. Regarding the Ailanthus altissima-Robinia pseudoacacia-Paulownia tomentosa community, the number of the species and the population had shown a change similar to the Robinia pseudoacacia community. The Paulownia tomentosa and the Ailanthus altissima have been culled. The slope was predicted as a Future Robinia pseudoacacia forest. The Salix pseudolasiogyne community has been transitioning to a Robinia pseudoacacia forest. Only some enumeration districts, the Robinia pseudoacacia forests and the Salix pseudolasiogyne, had been growing. However, most had been in been declining. It was predicted that this community will be maintained as a Robinia pseudoacacia forest in the future. As these vegetation communities are the representative vegetation of the landfill slope districts, which is reclaimed land, there is a need to understand the ecosystem changes of the community through continuous monitoring. The results of this research can be utilized as a basic material for the vegetation restoration of reclaimed land.

Development of disaster severity classification model using machine learning technique (머신러닝 기법을 이용한 재해강도 분류모형 개발)

  • Lee, Seungmin;Baek, Seonuk;Lee, Junhak;Kim, Kyungtak;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.261-272
    • /
    • 2023
  • In recent years, natural disasters such as heavy rainfall and typhoons have occurred more frequently, and their severity has increased due to climate change. The Korea Meteorological Administration (KMA) currently uses the same criteria for all regions in Korea for watch and warning based on the maximum cumulative rainfall with durations of 3-hour and 12-hour to reduce damage. However, KMA's criteria do not consider the regional characteristics of damages caused by heavy rainfall and typhoon events. In this regard, it is necessary to develop new criteria considering regional characteristics of damage and cumulative rainfalls in durations, establishing four stages: blue, yellow, orange, and red. A classification model, called DSCM (Disaster Severity Classification Model), for the four-stage disaster severity was developed using four machine learning models (Decision Tree, Support Vector Machine, Random Forest, and XGBoost). This study applied DSCM to local governments of Seoul, Incheon, and Gyeonggi Province province. To develop DSCM, we used data on rainfall, cumulative rainfall, maximum rainfalls for durations of 3-hour and 12-hour, and antecedent rainfall as independent variables, and a 4-class damage scale for heavy rain damage and typhoon damage for each local government as dependent variables. As a result, the Decision Tree model had the highest accuracy with an F1-Score of 0.56. We believe that this developed DSCM can help identify disaster risk at each stage and contribute to reducing damage through efficient disaster management for local governments based on specific events.

Factors Limiting the Vertical Distribution of the Deep-Water Asian Eelgrass, Zostera asiatica on the East Coast of the Korean Peninsula (동해 연안 왕거머리말의 수직분포 제한 요인)

  • KIM, JONG-HYEOB;KIM, HYEGWANG;KIM, SEUNG HYEON;KIM, YOUNG KYUN;LEE, KUN-SEOP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.4
    • /
    • pp.117-131
    • /
    • 2020
  • Although most species in genus Zostera inhabit shallow coastal areas and bays with weak wave energy, the Asian eelgrass, Zostera asiatica is distributed in deep water depth (8-15 m) unlike other seagrasses on the eastern coast of Korea. To examine factors limiting distribution Z. asiatica in relatively deep coastal areas, a transplantation experiment was conducted on October 2011, in which Z. asiatica shoots were transplanted from the reference site (donor meadow, ~9 m) to the shallow transplant site (~3 m). We compared shoot density, morphology, and productivity of Z. asiatica as well as environmental factors (underwater irradiance, water temperature, and nutrients) between the reference and transplant sites from October 2011 to September 2012. Shoot density and shoot height of transplants dramatically decreased within a few months after transplantation, but were similar with Z. asiatica in the reference site during spring. Shoot productivity were significantly higher in the transplant site than in reference site because of high light availability and nutrient concentrations. Transplants showed photoacclimatory responses such as higher rETRmax and Ek and lower photosynthetic efficiency in the transplant site than those in the reference site. Most of Z. asiatica transplant in the shallow transplant site disappeared in summer, which may be due to the high wave energy and physical damages induced by typhoons (TEMBIN and SANBA) in August and September 2012. According to the results of this study, Z. asiatica could not survive in shallow areas despite of more favorable light and nutrient conditions. Thus, Z. asiatica may restrictively occur in deep areas to avoid the intense physical stresses in the shallow area on the east coast of Korea.

The Differences of Rice Growth and Yield at Various Agroclimatic Regions in Chungnam Province (충남지역 농업기후 지대별 벼 생육 및 수량 변이)

  • Choi, N.G.;Park, J.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.1
    • /
    • pp.163-174
    • /
    • 2018
  • Rice cultivation is immensely affected by many climatic factors including temperature, precipitation, etc, and imbalanced climatic conditions negatively affect the growth of rice. In this study, we investigated the effects of different agroclimatic zones of Chungnam Province on rice quality and examined the correlations between climatic characteristics and rice yield components. Average temperatures and rainfall were higher in 'Western Sobaek Inland' than those in the 'South Western coastal zone, and precipitation records showed a wide variation among counties due to typhoons during the examined periods. The average accumulative temperature affecting the magnitude of production during reproductive growth periods was higher in "Cheon-An", "Gong-Ju", "Yeon-Gi (Se-Jong)", "Bo-Ryeong", and "Dang-Jin" counties than those in other counties. The plant height was higher in 'Western Sobaek Inland' counties such as "Yeon-Gi(Se-Jong)" and "Cheon-An", and 'Southern Charyeong Plain' counties such as "Cheong-Yang", "Dang-Jin", and "A-San", than those in other counties. The number of tillers during the 40 days after rice transplantation in "Seo-Cheon" and "Bo-Ryeong" counties increased compared to other counties. This result was relevant to the fact that the date of rice transplantation in those counties was 3 to 4 days later than those in other counties of Chung-Nam Province. The average yield (milled rice basis) was the highest in 'Western Sobaek Inland' zone, showing 3,756 kg ha-1, followed by 'Southern Charyeong Plain' zone showing 3,621kg ha-1, and was the lowest in 'South Western coastal zone by 3,315kg ha-1. "Yeon-Gi(Se-Jong)" and "Dang-Jin" counties showed the highest yields of 4,100kg ha-1. "Seo-San", "Seo-Cheon", and "Tae-An" counties were relatively lower yields of 3,240~3,280kg ha-1 in comparison of other counties.

The study of heavy rain warning in Gangwon State using threshold rainfall (침수유발 강우량을 이용한 강원특별자치도 호우특보 기준에 관한 연구)

  • Lee, Hyeonjia;Kang, Donghob;Lee, Iksangc;Kim, Byungsikd
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.751-764
    • /
    • 2023
  • Gangwon State is centered on the Taebaek Mountains with very different climate characteristics depending on the region, and localized heavy rainfall is a frequent occurrence. Heavy rain disasters have a short duration and high spatial and temporal variability, causing many casualties and property damage. In the last 10 years (2012~2021), the number of heavy rain disasters in Gangwon State was 28, with an average cost of 45.6 billion won. To reduce heavy rain disasters, it is necessary to establish a disaster management plan at the local level. In particular, the current criteria for heavy rain warnings are uniform and do not consider local characteristics. Therefore, this study aims to propose a heavy rainfall warning criteria that considers the threshold rainfall for the advisory areas located in Gangwon State. As a result of analyzing the representative value of threshold rainfall by advisory area, the Mean value was similar to the criteria for issuing a heavy rain warning, and it was selected as the criteria for a heavy rain warning in this study. The rainfall events of Typhoon Mitag in 2019, Typhoons Maysak and Haishen in 2020, and Typhoon Khanun in 2023 were applied as rainfall events to review the criteria for heavy rainfall warnings, as a result of Hit Rate accuracy verification, this study reflects the actual warning well with 72% in Gangneung Plain and 98% in Wonju. The criteria for heavy rain warnings in this study are the same as the crisis warning stages (Attention, Caution, Alert, and Danger), which are considered to be possible for preemptive rain disaster response. The results of this study are expected to complement the uniform decision-making system for responding to heavy rain disasters in the future and can be used as a basis for heavy rain warnings that consider disaster risk by region.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.

Wind and Flooding Damages of Rice Plants in Korea (한국의 도작과 풍수해)

  • 강양순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.45-65
    • /
    • 1989
  • The Korean peninsular having the complexity of the photography and variability of climate is located within passing area of a lots of typhoon occurring from the southern islands of Philippines. So, there are various patterns of wind and flooding damages in paddy field occuring by the strong wind and the heavy rain concentrated during the summer season of rice growing period in Korea. The wind damages to rice plants in Korea were mainly caused by saline wind, dry wind and strong wind when typhoon occurred. The saline wind damage having symptom of white head or dried leaves occurred by 1.1 to 17.2 mg of salt per dry weight stuck on the plant which was located at 2. 5km away from seashore of southern coastal area during the period(from 27th to 29th, August, 1986) of typhoon &Vera& accompanying 62-96% of relative humidity, more than 6 m per second of wind velocity and 22.5 to 26.4$^{\circ}C$ of air temperature without rain. Most of the typhoons accompanying 4.0 to 8. 5m per second of wind and low humidity (lesp an 60%) with high temperature in the east coastal area and southen area of Korea. were changed to dry and hot wind by the foehn phenomenon. The dry wind damages with the symptom of the white head or the discolored brownish grain occurred at the rice heading stage. The strong wind caused the severe damages such as the broken leaves, cut-leaves and dried leaves before heading stage, lodging and shattering of grain at ripening stage mechanically during typhoon. To reduce the wind damages to rice plant, cultivation of resistant varieties to wind damages such as Sangpoongbyeo and Cheongcheongbyeo and the escape of heading stage during period of typhoon by accelerating of heading within 15th, August are effective. Though the flood disasters to rice plant such as earring away of field, burying of field, submerging and lodging damage are getting low by the construction of dam for multiple purpose and river bank, they are occasionally occurred by the regional heavy rain and water filled out in bank around the river. Paddy field were submerged for 2 to 4 days when typhoon and heavy rain occurred about the end of August. At this time, the rice plants that was in younger growing stage in the late transplanting field of southern area of Korea had the severe damages. Although panicles of rice plant which was in the meiotic growing stage and heading stage were died when flooded, they had 66% of yield compensating ability by the upper tilling panicle produced from tiller with dead panicle in ordinary transplanting paddy field. It is effective for reduction of flooding damages to cultivate the resistant variety to flooding having the resistance to bacterial leaf blight, lodging and small brown planthopper simultaneously. Especially, Tongil type rice varieties are relatively resistant to flooding, compared to Japonica rice varieties. Tongil type rice varieties had high survivals, low elongation ability of leaf sheath and blade, high recovering ability by the high root activity and photosynthesis and high yield compensating ability by the upper tillering panicle when flooded. To minimize the flooding and wind damage to rice plants in future, following research have to be carried out; 1. Data analysis by telemetering and computerization of climate, actual conditions and growing diagnosis of crops damaged by disasters. 2. Development of tolerant varieties to poor natural conditions related to flooding and wind damages. 3. Improvement of the reasonable cropping system by introduction of other crops compensating the loss of the damaged rice. 4. Increament of utilization of rice plant which was damaged.

  • PDF