• 제목/요약/키워드: Typhoon wave

검색결과 178건 처리시간 0.022초

태풍 '매미' 내습시 파랑선정에 관한 기초적 연구 (A Study on the Numerical Calculation for Wind Waves During the Passage of Typhoon 'Memi')

  • 이경선;김홍진;윤한삼;류청로
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.229-234
    • /
    • 2004
  • A Typhoon wave is generated by wind fields during the Passage of Typhoon. Transporting wind field makes wind wave and swell in the open sea, and then, those wave components are transported in the shallow water. Typhoon waves in the shallow water is generated by Typhoon wind field and incident wave. Bisides, Incident waves to the shallow water are deformated by topographic conditions. This paper estimated the analysis of the Typhoon waves by wind fields and incident waves according to wave action balance equation model. As the result of wave numerical experiment, wave field during the passage of Typhoon 'Memi' in the shallow water is strongly effect by wind fields. Wave action balance equaion can be partially used for Typhoon wave simulations.

  • PDF

태풍파를 기준으로한 전설계수심의 산정에 관한 연구 (A Study on the Calculation of Total Design Water Depth From Typhoon Waves)

  • 이종우
    • 한국항해학회지
    • /
    • 제13권3호
    • /
    • pp.45-65
    • /
    • 1989
  • Various typhoon data near Yongil Bay, Korea from 1961 to 1985 were collected with some critria and analyzed with the help of the computer. Introducing the pressure profile models and predicting the typhoon wind and wave fields, the 100-year design wave parameters were calculated. Additionally, the wave data at the southeast coast of Korea were statistically analyzed. The deep water wave climate of this bay indicated that Typhoon Brenda, 1985 had wave characteristics of 100-year return period, Typhoon model and storm surge model studies were made for this typhoon. These, including other design parameters, were introduced into the calculation of total design water depth.

  • PDF

태풍의 풍향특성을 고려한 천해파 산정에 관한 연구 (A Study on the Numerical Calculation for Shallow Water Waves Considering the Wind Direction Characteristics of Typhoon)

  • 이경선;김정태;류청로
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2007
  • While a typhoon is traveling, characteristics of its wind fields are continuously changing, producing severe changes in local water level and wave conditions, especially, when a typhoon comes into shallow water. However, there have not been many studies related to local typhoon effects, especially, considering real time changes of wind direction related to the coastal topography. In the study, the characteristics of the wind field by typhoon and topographical characteristics in shallow water are considered, as well as conditions of wave climate estimation. These are performed by the SWAN (Simulating waves nearshore) model, in order to estimate the growth of wave energy due to the wind field. It can be strongly suggested that the wave energy of theof an inner bay should be estimated when the direction of the bay entrance and the wind direction of the typhoon are identical. The result of the numerical calculations is in better agreement with the observed data than the result of the conventional estimation techniques.

태풍 나비에 의한 한국 연안 태풍파의 신속 모의 (Fast Simulation of Wind Waves along the Korean Coast Induced by Typhoon Nabi, 2005)

  • 이정렬;임흥수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.567-573
    • /
    • 2006
  • An efficient typhoon wave-generating model is applied to northeast Asia sea zone presented that can be used by civil defense agencies for real-time prediction and fast warnings on typhoon-generated wind wave and storm surge. Instead of using commercialized wave models such as WAM, SWAN, the wind waves are simulated by using a new concept of wavelength modulation to enhance broader application of the hyperbolic wave model of the mild-slope equation type. The results simulated along the Korean coasts during Typhoon Nabi (2005) showed reasonable agreement with the recorded wind waves.

  • PDF

A Study on the Development of Wind and Wave Model of Typhoon

  • Jin Guo-Zhu;Song Chae-Uk;Seol Dong-Il
    • 한국항해항만학회지
    • /
    • 제28권9호
    • /
    • pp.815-820
    • /
    • 2004
  • In this paper, after analyzing other models with their advantages and disadvantages, we proposed a simple parametric model for calculating wind speed & direction and wave height & direction at any location around the typhoon at sea. The proposed wind-field model of typhoon is asymmetric, and consists of a circular symmetric wind-field caused by the pressure gradient of stationary typhoon and a moving wind-field caused by the movement of typhoon. By verifying this model through observed data, we found that it is accurate enough to develop the simulation software for training students and seafarers so as to take appropriate actions while being faced with the typhoon at sea.

태풍 내습 시의 고파 재현성 개선방안 연구 (A Study on the Methods to Improve High-Wave Reproducibility during Typhoon)

  • 백종대;류경호;이종인;정원무;장연식
    • 한국해안·해양공학회논문집
    • /
    • 제34권6호
    • /
    • pp.177-187
    • /
    • 2022
  • 본 연구는 2020년 해양수산부에서 제시한 개정된 천해설계파 추산방법인 바람장을 이용하여 부산항 신항을 대상으로 태풍 내습 시 설계파를 추산하고 파랑 관측자료와의 검증을 통해서 신뢰할 수 있는 천해설계파 산출방법을 제안하였다. 부산항 신항에 영향을 미친 태풍에 대해서 현업에서 일반적으로 많이 사용하고 있는 태풍 바람장과 SWAN 수치모델을 이용하여 태풍파를 추산한 결과 태풍 KONG-REY(1825), MAYSAK(2009)을 제외하고 재현성이 불량한 것으로 나타났다. 특히 부산항 신항에 가장 크게 영향을 미쳤던 태풍 MAEMI(0314)의 경우 최대유의 파고가 파랑 관측치에 비해서 약 35.0% 작게 추산되었다. 이에 바람장을 보정한 방법과 Boussinesq 방정식 수치모델을 이용하는 방법을 각각 적용하여 태풍파 재현성 개선방안을 검토하였다. 검토결과 바람장을 보정한 경우는 바람장 보정전과 동일하게 재현성이 떨어지는 것으로 나타났으나, 바람장 자료와 SWAN 모델 실험결과 그리고 Bou ssinesq 수치모델을 연계하는 방법으로 태풍 MAEMI(0314) 내습 시 태풍파를 추산한 결과 파랑 관측치와 최대유의파고가 유사하게 나타나 재현성이 양호한 것으로 검토되었다.

전지구·지역·국지연안 통합 파랑예측시스템 개발을 위한 여름철 태풍시기 풍파성장 파라미터 민감도 분석 (Sensitivity Analysis of Wind-Wave Growth Parameter during Typhoon Season in Summer for Developing an Integrated Global/Regional/Coastal Wave Prediction System)

  • 오유정;오상명;장필훈;강기룡;문일주
    • Ocean and Polar Research
    • /
    • 제43권3호
    • /
    • pp.179-192
    • /
    • 2021
  • In this study, an integrated wave model from global to coastal scales was developed to improve the operational wave prediction performance of the Korean Meteorological Administration (KMA). In this system, the wave model was upgraded to the WaveWatch III version 6.07 with the improved parameterization of the source term. Considering the increased resolution of the wind input field and the introduction of the high-performance KMA 5th Supercomputer, the spatial resolution of global and regional wave models has been doubled compared to the operational model. The physical processes and coefficients of the wave model were optimized for the current KMA global atmospheric forecasting system, the Korean Integrated Model (KIM), which is being operated since April 2020. Based on the sensitivity experiment results, the wind-wave growth parameter (βmax) for the global wave model was determined to be 1.33 with the lowest root mean square errors (RMSE). The value of βmax showed the lowest error when applied to regional/coastal wave models for the period of the typhoon season when strong winds occur. Applying the new system to the case of August 2020, the RMSE for the 48-hour significant wave height prediction was reduced by 13.4 to 17.7% compared to the existing KMA operating model. The new integrated wave prediction system plans to replace the KMA operating model after long-term verification.

On the Development of Typhoon Avoidance Simulation System with the Evaluating Method by Seakeeping Performance of Ship

  • Song Chae-Uk;Kong Gil-Young;Jin Guo-Zhu
    • 한국항해항만학회지
    • /
    • 제29권4호
    • /
    • pp.299-304
    • /
    • 2005
  • A simulation system is needed to train students and mariners in order that they can take suitable actions to evade typhoon's strike promptly and sufficiently. In order to make such kind of system, three kinds of models about the typhoon are necessary, typhoon prediction model to generate typhoon's track, wind & wave-field model to make sea conditions around the typhoon and evaluation model of trainee's action whether their actions were suitable or not during simulation. We have developed the prediction and wind & wave-field models of typhoon, but the evaluation model has not been developed yet. In this paper, after making a method for evaluating trainee's actions by seakeeping performance, we propose an typhoon avoidance simulation system for training mariners so that they can promote their abilities to evade the typhoons at sea.

천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토 (Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi)

  • 천제호;안경모;윤종태
    • 한국해안·해양공학회논문집
    • /
    • 제21권1호
    • /
    • pp.79-90
    • /
    • 2009
  • 본 논문에서는 심해부터 천해에 까지 적용가능한 동적결합형 태풍 해일-조석-파랑 수치모델을 태풍 매미에 적용하여 모델의 안정성과 정확성을 검증하였다. 동적결합형 모델은 해수유동 모델인 POM을 수정한 모듈과 심해 풍파모델인 WAM을 심해부터 천해까지 적용가능하도록 수정한 모듈로 구성되어 있다. 수정 POM 모듈에서 조위, 조류 와 해일을 계산하며, 수정 WAM 모듈에서 풍파를 계산하여 상호 계산된 결과를 주고 받도록 결합된 동적결합형 모델이다. 수정 WAM 모듈에서는 잉여응력과 바람에 의한 마찰응력, 해수면 조도계수 등의 계산결과가 POM으로 제공되며 수정 POM 모듈에서는 유속, 조위면 등의 정보가 WAM으로 제공된다. 개발된 수치모델을 태풍 매미에 적용하여 계산된 결과를 관측된 파랑 및 조위자료와 비교하여 정확성을 검증하였다.

부산 연안지형 VRS-GPS 계측을 통한 태풍해일 침수예측 (VRS-GPS Measure of Typhoon Surge Flood Determinedin Busan Coastal Topography)

  • 김가야;정광효;김정호
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.47-53
    • /
    • 2012
  • A coastal flood area was predicted using the empirical superposition of the typhoon surge level and typhoon wave height along the Busan coastal area. The historical typhoon damages were reviewed, and the coastal topography was measured using VRS-GPS. A FEMA formula was applied to estimate the coastal flood area in a typhoon case when the measured and predicted data of typhoon waves are not available. The results in the area of Haeundae beach and Gwangalli beach were verified using the flood area data from the case of Typhoon Maemi (2003). If a Hurricane Katrina class typhoon were to pass through the Maemi trajectory, the areathat would be flooded along theBusan coastal area was predicted and compared with the results of the Maemi case. Because of the lack of ocean environment data such as data for the sea level, waves, bathymetry, wind, pressure, etc., it is hard to improve the prediction accuracy for the coastal flood area in the typhoon case, which could be reflected in the policy to mitigate a typhoon's impact. This paper discusses the kinds of ocean environment information that is needed to predict a typhoon's impact with better accuracy.