• Title/Summary/Keyword: Typhoon RUSA damage

Search Result 35, Processing Time 0.024 seconds

The Investigation Research about the Countermeasure and Demand of Residents which are Damaged from the Large Disaster Occurrence - the focus of the area damaged by typhoon RUSA in 2002- (대형재난발생에 따른 피해지역주민의 대응과 요구에 관한 조사연구 -2002년 태풍 ${\ulcorner}RUSA{\lrcorner}$의 주요피해지역을 중심으로 -)

  • Back Min-Ho
    • Journal of the Korean housing association
    • /
    • v.15 no.6
    • /
    • pp.115-125
    • /
    • 2004
  • This research is inquired to the residents in Kimcheon, Kyongsang-Boukdo and in Kangnung, Yangyang, Kangwon-Do. The residents were damaged by typhoon ${\ulcorner}RUSA{\lrcorner}$ in 2002, which occurred the biggest damage in our country's natural disaster. The result of inquiry is arranged in this research. Inquiry contents arrange a current events points through the inquiry. which is about the resident's demand and confrontation caused by a big disaster occurrence; the damage present condition which is caused by typhoon ${\ulcorner}RUSA{\lrcorner},$ the countermeasure condition on damage occurrence, the necessity content of area disaster information, the difficulty factor of damage restoration, the evaluation of the government and relation group's countermeasure which is about typhoon ${\ulcorner}RUSA{\lrcorner},$ the mental and body problem after disaster occurrence. And inquiry contents present the fundamental data for establishing the area prevention of disaster plan hereafter.

Method Development of Flood Damaged Area Detection by Typhoon RUSA using Landsat Images (Landsat 영상을 이용한 태풍 RUSA 침수피해지역 분석기법 연구)

  • Lee, Mi Seon;Park, Geun Ae;Park, Min Ji;Shin, Hyung Jin;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1300-1304
    • /
    • 2004
  • This study is to present a method of flood damaged area detection by the typhoon RUSA (August 31 - September 1, 2002) using Landsat 7 ETM+ and Landsat 5 TM images. Two images of Sept. 29, 2000 and Sept. 11, 2002 (path 115, row 34) were prepared for Gangreung, To identify the damaged areas, firstly, the NDVI (Normalized Difference Vegetation Index) of each image was computed, secondly, the NDVI values were reclassified as two categories that the negative index values including zero are the one and the positive index values are the other, thirdly the reclassified image before typhoon is subtracted from the reclassified image after typhoon to get DNDVI (Differential NDVI). Some part of urban and agricultural were classified into damaged area due to typhoon RUSA in Gangreung, $18.8km^2$ and $17.7km^2$ respectively.

  • PDF

GPS PWV Variation Research During the Progress of a Typhoon RUSA (태풍 RUSA의 진행에 따른 GPS PWV 변화량 연구)

  • 송동섭;윤홍식;서애숙
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • Typhoon RUSA, which caused serious damage was passed over in Korea peninsula during 30 August to 1 September, 2002. We estimated tropospheric wet delay using GPS data and meteorological data during this period. Integrated Water Vapor(IWV) gives the total amount of water vapor from tropospheric wet delay and Precipitable Water Vapor(PWV) is calculated the IWV scaled by the density of water. We obtained GPS PWV at 13th GPS permanent stations(Seoul, Wonju. Seosan, Sangju, Junju, Cheongju, Taegu, Wuljin, Jinju, Daejeon, Mokpo, Sokcho, Jeju). We retrieve GPS data hourly and use Gipsy-Oasis II software and we compare PWV and precipitation. GPS observed PWV time series demonstrate that PWV is, in general, high before and during the occurrence of the typhoon RUSA, and low after the typhoon RUSA. GPS PWV peak time at each station is related to the progress of a typhoon RUSA. We got very near result as we compare GMS Satellite image with tomograph using GPS PWV and we could present practical use possibility by numerical model for weather forecast.

Estimation of the Maximum Wind to Surface Using Wind Profile in Typhoon and Gust Factor (태풍 연직프로파일과 gust factor를 이용한 지상의 최대풍속 추정)

  • Jung, Woo-Sik;Park, Jong-Kil;Choi, Hyo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.290-292
    • /
    • 2008
  • we applied Wind Field Module of PHRLM so that disaster prevention agency concerned can effectively estimate the possible strong wind damages by typhoon. In this study, therefore, we estimated wind speed at 300m level using 700hPa wind according to the research method by Franklin(2003), PHRLM(2003), and Vickery and Skerlj(2005). Then we calculated wind speed at 10m level using the estimated wind speed at 300m level, and finally, peak 3.second gust on surface. The case period is from 18LST August 31 to 03LST September 1, 2002, when the typhoon Rusa in 2002 was the most intense. Among disaster prediction models in the US, Wind Field Module of PHRLM in Florida was used for the 2002 typhoon Rusa case. As a result, peak 3.second gust on the surface increased $10\sim20%$ in the typhoon's 700hPa wind speed.

  • PDF

A Study on the Flood Damage Assessment by Typhoon RUSA in the East Coast of Kangwon Prefecture Following the 2000 Large Scale Fire Disaster -Focused on the Watershed of Oship River, Samcheok City (2000년 강원도 동해안지역 대규모 산불화재가 태풍루사 홍수피해에 미친 영향 -삼척시 오십천을 중심으로)

  • 강상혁
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.70-75
    • /
    • 2003
  • The east coast of Kangwon province has been suffering from natural disaster like wildfire and flooding. In April 2000, there has been a great wildfire in this area. Many forest was burnt out, the mountain was bared. Furthermore, on 31st August,2002 typhoon RUSA attacked the area with heavy rainfall of about 315 mm/day, which resulted in 178 deaths and extensive damage to the property, In this regard, our study was focused on the assessment of the factors of flooding damage considering wildfire disaster. Most of results for our study are derived from practical investigation in the east coast of Kangwon province.

Precision Evaluation of GPS PWV and Production of GPS PWV Tomograph during Foul Weather (악천후시 GPS PWV의 측정 정밀도 검증 및 GPS PWV 변화도 작성)

  • 윤홍식;송동섭
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.69-74
    • /
    • 2003
  • GPS/Meteorology technique for PWV monitoring is currently actively being researched an advanced nation. But, there is no detailed research on an evaluation of precision of GPS derived PWV measurements during the period of foul weather condition. Here, we deal with the precision of GPS derived PWV during the passage of Typhoon RUSA. Typhoon RUSA which caused a series damage was passed over in Korea from August 30 to September 1, 2002. We compared th tropospheric wet delay estimated from GPS observation and radio-sonde data at four sites(Suwon, Kwangju, Taegu, Cheju). The mean standard deviation of PWV differences at each site is ${\pm}$0.005mm. We also obtained GPS PWV at 13 GPS permanent stations(Seoul, Wonju, Seosan, Sangju, Junju, Cheongju, Taegu, Wuljin, Jinju, Daejeon, Mokpo, Sokcho, Jeju). GPS PWV time series shows, in general, peak value before and during th passage of RUSA, and low after the RUSA. GPS PWV peak time at each station is related to the progress of a typhoon RUSA. We obtained very similar result as we compare GMS satellite image with tomograph using GPS PWV and we could present th possibility of practical use by numerical model for weather forecast.

  • PDF

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

Characteristics of Monthly Maximum Wind Speed of Typhoons Affecting the Korean Peninsula - Typhoon RUSA, MAEMI, KOMPASU, and BOLAVEN - (한반도 영향 태풍의 월별 최대풍 특징과 사례 연구 - 태풍 루사·매미·곤파스·볼라벤을 대상으로 -)

  • Na, Hana;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.441-454
    • /
    • 2019
  • The present study analyzes the characteristics of 43 typhoons that affected the Korean Peninsula between 2002 and 2015. The analysis was based on 3-second gust measurements, which is the maximum wind speed relevant for typhoon disaster prevention, using a typhoon disaster prevention model. And the distribution and characteristics of the 3-second gusts of four typhoons, RUSA, MAEMI, KOMPASU, and BOLAVEN that caused great damage, were also analyzed. The analysis show that between May and October during which typhoons affected the Korean Peninsula, the month with the highest frequency was August(13 times), followed by July and September with 12 occurrences each. Furthermore, the 3-second gust was strongest at 21.2 m/s in September, followed by 19.6 m/s in August. These results show that the Korean Peninsula was most frequently affected by typhoons in August and September, and the 3-second gusts were also the strongest during these two months. Typhoons MAEMI and KOMPASU showed distribution of strong 3-second gusts in the right area of the typhoon path, whereas typhoons RUSA and BOLAVEN showed strong 3-second gusts over the entire Korean Peninsula. Moreover, 3-second gusts amount of the ratio of 0.7 % in case of RUSA, 0.8 % at MAEMI, 3.3 % at KOMPASU, and 21.8 % at BOLAVEN showed as "very strong", based on the typhoon intensity classification criteria of the Korea Meteorological Administration. Based on the results of this study, a database was built with the frequencies of the monthly typhoons and 3-second gust data for all typhoons that affected the Korean Peninsula, which could be used as the basic data for developing a typhoon disaster prevention system.

Estimation of Surface Wind Speed on the Strong Wind Damage by Typhoon (태풍으로 인한 강풍 피해 추정을 위한 지상풍 산정 연구(Ⅰ))

  • Park, Jong-Kil;Jung, Woo-Sik;Choi, Hyo-Jin
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.85-88
    • /
    • 2008
  • Damage from typhoon disaster can be mitigated by grasping and dealing with the damage promptly for the regions in typhoon track. What is this work, a technique to analyzed dangerousness of typhoon should be presupposed. This study estimated 10m level wind speed using 700hPa wind by typhoon, referring to GPS dropwindsonde study of Franklin(2003). For 700hPa wind, 30km resolution data of Regional Data Assimilation Prediction System(RDAPS) were used. For roughness length in estimating wind of 10m level, landuse data of USGS are employed. For 10m level wind speed of Typhoon Rusa in 2002, we sampled AWS point of $7.4\sim30km$ distant from typhoon center and compare them with observational data. The results show that the 10m level wind speed is the estimation of maximum wind speed which can appear in surface by typhoon and it cannot be compared with general hourly observational data. Wind load on domestic buildings relies on probability distributions of extreme wind speed. Hence, calculated 10m level wind speed is useful for estimating the damage structure from typhoon.

  • PDF

A Framework to Estimate GDP Loss due to Extreme Water-related Disaster in Kangwon-do

  • Kang, Sang-Hyeok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.159-166
    • /
    • 2007
  • Large scale flood disasters bring human losses and properties, which lead to the decrease of our productive value and change social environment. Human loss and economic damage are considered to be the same system but they are viewed as separated systems. The total amount of human loss can be represented as the total amount of economic damage estimated in the frame of social system while it will be possible to make mutual changing by clearing the relations between social and economic systems. In this regard, an attempt to estimate economic loss considering per capita Gross Domestic Production (GDP) caused by flood-related mortality was carried out to the typhoon Rusa of 2002 in Kangwon-do. The proposed method tried to capture quantitative factors which are affecting the loss of per capita GDP. The approach has great importance not only to set up governmental policy but also methodological progress in the research due to impact of disaster-related mortality on GDP loss.