• Title/Summary/Keyword: Typhoon 'Rusa'

Search Result 109, Processing Time 0.019 seconds

A Change of Peak Outflows due to Decision of Flow Path in Storm Sewer Network (우수관망 노선 결정에 따른 첨두유출량 변화 분석)

  • Lee, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5151-5156
    • /
    • 2010
  • In the previous researches for storm sewer design, the flow paths in overall network were determined to minimize the construction cost and then, it was not considered the superposition effect of runoff hydrographs in the sewer pipes. However, in this research, the flow paths are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the flows in the sewer pipes. This is accomplished by distributing the inflows that enter into each junction by changing the flow path in which pipes are connected between junctions. In this paper, the superposition effect and peak outflows at outlet were analyzed considering the changes of the flow paths in the sewer network. Then, the flow paths are determined using genetic algorithm and the objective function is to minimize the peak outflow at outlet. As the applied result for the sample sewer network, the difference between maximum and minimum peak outflows which are caused by the change of flow path was about 5.6% for the design rainfall event of 10 years frequency with 30 min. duration. Also, the typhoon 'Rusa' which occurred at 2002 was applied to verify the reduction of inundation risk for the excessive rainfall, and then, the amount of overflows was reduced to about 31%.

An Analysis of PMF and Critical Duration for Design of Hydraulic Structure (수공구조물 설계를 위한 PMF 및 임계지속시간 분석)

  • Lee, Sang-Jin;Choi, Hyun;Shin, Hee-beom;Park, Sang-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.707-718
    • /
    • 2004
  • This study is to analyze the Probable Maximum Flood(PMF) as a part of counterplan for the disaster prevention of hydraulic structures such as dams, according to recent unfavorable weather conditions. During the period of typhoon RUSA in August 2002, the rainfall recorded in Gang-loeng Province was 880mm a day and exceeded the scale of PMP made in 2001. Accordingly, the reconsideration of hydrologic criteria for dam design was inevitable. In the design of dams for flood controls, the design flood must be determined by introducing the concept of maximum values. When the duration of design rainfall is determined, it needs to use the critical duration which causes the maximum flood by the maximum runoff. In this study, we Investigate the variation of critical duration with hydrologic parameters used in three different synthetic unit hydrographs(Clark, Nakayasu and SCS methods). As a result, the total runoff calculated from 24-hour duration is larger than that calculated from the critical duration. We calculate also the hydrographs with three different time distribution models(Huff's 4-quartile, IDF curve and Mononobe) and compare those with measured hydrograph data. From this comparison, we propose that the Huff's 4-quartile model must be used to obtain the desirable data in the hydrologic design of dams.

The Geometric Characteristics of Landslides and Joint Characteristics in Gangneung Area (강릉지역 산사태의 기하학적 특성과 절리특성에 관한 연구)

  • Cho, Yong-Chan;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.437-453
    • /
    • 2006
  • More than 3,000 landslides were occurred by torrential rains in Gangneung area due to the typhoon Rusa in 2002. In order to analyze the landslide origin and its geometric characteristics, 1,365 landslide data were collected from the field survey of Sacheon, Jumunjin, and Yeongok areas in which the intensive landslides took place. The average landslide size in the study area was composed of 10m width, 30m length, and $21^{\circ}{\sim}35^{\circ}$ slope angle, and the plane view of landslides A-type (i.e. wide shape of lower part) that contains approximately 50.5% of the landslides commonly occurred. In particular the area of Sacheon heavily damaged by mountain fires had more occurrence of landslides than other areas. The landslides of uniform tendency of slope direction were examined resulted from the contribution of topographic characteristics due to the weathering and wind direction during heavy rainfalls. In order to analyze the direction of joint, 249 orientation data were collected from the study area. The window method was employed to determine the characteristics of joint density in 51 locations of the study area. The results showed that many landslides occurred in the areas of joint density with the range of $0.05{\sim}0.1$.

The Study of Efficient Estimation of GPS Photogrammetry (GPS 항공사진측량의 효율성 평가에 관한 연구)

  • Kim, Young-Suk;Shon, Ho-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • Recently, spillways are need to control stable water level for supporting main dams because of floods by unusual change of weather such as Typhoon Rusa. This study has been focused on the amount of leakage through the rock mass distributed fractures and joints under the opened emergency spillway. It is very important to evaluate the amount of leakage as these affect stability of spillway by interaction between effective stress and pore pressure. The commercial program MAFIC has been used for analyzing groundwater flow in fractured rock mass. The results showed that the values of range, average and deviation of leakage were 2.85∼ 3.79×10-1, 3.32×10-1 and 1.70×10-2 m3/day/m2 respectively. Secondary, we have estimated the effect of grouting after the transmissivity(Tf) of joint 1 as main pathway of leakage known from above results was changed from 1.78×10-7 to 1.59×10-9 m2/s. The results showed that the values of range, average and deviation of leakage were 7.80×10-4∼1.53×10-3, 1.18×10-3 and 1.32×10-4 m3/day/m2 respectively. As the result, the amount of leakage after grouting has been decreased by a ratio of 1 to 277.

  • PDF

Development of integrated disaster mapping method (I) : expansion and verification of grid-based model (통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증)

  • Park, Jun Hyung;Han, Kun-Yeun;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • The objective of this study is to develop a two-dimensional (2D) flood model that can perform accurate flood analysis with simple input data. The 2D flood inundation models currently used to create flood forecast maps require complex input data and grid generation tools. This sometimes requires a lot of time and effort for flood modeling, and there may be difficulties in constructing input data depending on the situation. In order to compensate for these shortcomings, in this study, a grid-based model that can derive accurate and rapid flood analysis by reflecting correct topography as simple input data was developed. The calculation efficiency was improved by extending the existing 2×2 sub-grid model to a 5×5. In order to examine the accuracy and applicability of the model, it was applied to the Gamcheon Basin where both urban and river flooding occurred due to Typhoon Rusa. For efficient flood analysis according to user's selection, flood wave propagation patterns, accuracy and execution time according to grid size and number of sub-grids were investigated. The developed model is expected to be highly useful for flood disaster mapping as it can present the results of flooding analysis for various situations, from the flood inundation map showing accurate flooding to the flood risk map showing only approximate flooding.

Dam Break Analysis with HEC-HMS and HEC-RAS (HEC-HMS와 HEC-RAS를 이용한 댐 붕괴 해석)

  • Hong, Seung-Jin;Kim, Soo-Jun;Kim, Hung-Soo;Kyung, Min-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.347-356
    • /
    • 2009
  • This study simulates the dam break situation by a probable maximum precipitation of Soyang-River Dam using HEC-HMS model and HEC-RAS model and compares the simulated results. The probable maximum precipitation was calculated using the flood event of the typhoon Rusa occurred in 2002 and using the mean areal precipitation of the Gangreung region and the moisture maximization method. The estimated probable maximum precipitations were compared for the duration of 6, 12, 18, and 24 hrs and were used as input data for the HEC-HMS model. Moreover, the inflow data calculated by HEC-HMS were utilized as ones for HEC-RAS, and then unsteady flow analysis was conducted. The two models were used for the dam break analysis with the same conditions and the peak flow estimated by HEC-HMS was larger than that of the HEC-RAS model. The applicability of two models was performed from the dam break analysis then we found that we could simulate more realistic peak flow by HEC-RAS than HEC-HMS. However, when we need more fast simulation results we could use HEC-HMS. Therefore, we may need the guidelines for the different utilizations with different purposes of two models. Furthermore, since the two models still include uncertainties, it is important to establish more detailed topographical factors and data reflecting actual rivers.

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (II) - Application and Analysis - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(II) - 적용 및 분석 -)

  • Jung, In Kyun;Shin, Hyung Jin;Park, Jin Hyeog;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.709-721
    • /
    • 2008
  • This paper is to test the applicability of ModKIMSTORM (Modified KIneMatic Wave STOrm Runoff Model) by applying it to Namgangdam watershed of $2,293km^2$. Model inputs (DEM, land use, soil related information) were prepared in 500 m spatial resolution. Using five typhoon events (Saomi in 2000, Rusa in 2002, Maemi in 2003, Megi in 2004 and Ewiniar in 2006) and two storm events (May of 2003 and July of 2004), the model was calibrated and verified by comparing the simulated streamflow with the observed one at the outlet of the watershed. The Pearson's coefficient of determination $R^2$, Nash and Sutcliffe model efficiency E, the deviation of runoff volumes $D_v$, relative error of the peak runoff rate $EQ_p$, and absolute error of the time to peak runoff $ET_p$ showed the average value of 0.984, 0.981, 3.63%, 0.003, and 0.48 hr for 4 storms calibration and 0.937, 0.895, 8.08%, 0.138, and 0.73 hr for 3 storms verification respectively. Among the model parameters, the stream Manning's roughness coefficient was the most sensitive for peak runoff and the initial soil moisture content was highly sensitive for runoff volume fitting. We could look into the behavior of hyrologic components from the spatial results during the storm periods and get some clue for the watershed management by storms.

GIS-based Disaster Management System for a Private Insurance Company in Case of Typhoons(I) (지리정보기반의 재해 관리시스템 구축(I) -민간 보험사의 사례, 태풍의 경우-)

  • Chang Eun-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.1 s.112
    • /
    • pp.106-120
    • /
    • 2006
  • Natural or man-made disaster has been expected to be one of the potential themes that can integrate human geography and physical geography. Typhoons like Rusa and Maemi caused great loss to insurance companies as well as public sectors. We have implemented a natural disaster management system for a private insurance company to produce better estimation of hazards from high wind as well as calculate vulnerability of damage. Climatic gauge sites and addresses of contract's objects were geo-coded and the pressure values along all the typhoon tracks were vectorized into line objects. National GIS topog raphic maps with scale of 1: 5,000 were updated into base maps and digital elevation model with 30 meter space and land cover maps were used for reflecting roughness of land to wind velocity. All the data are converted to grid coverage with $1km{\times}1km$. Vulnerability curve of Munich Re was ad opted, and preprocessor and postprocessor of wind velocity model was implemented. Overlapping the location of contracts on the grid value coverage can show the relative risk, with given scenario. The wind velocities calculated by the model were compared with observed value (average $R^2=0.68$). The calibration of wind speed models was done by dropping two climatic gauge data, which enhanced $R^2$ values. The comparison of calculated loss with actual historical loss of the insurance company showed both underestimation and overestimation. This system enables the company to have quantitative data for optimizing the re-insurance ratio, to have a plan to allocate enterprise resources and to upgrade the international creditability of the company. A flood model, storm surge model and flash flood model are being added, at last, combined disaster vulnerability will be calculated for a total disaster management system.

Assessment of Environmental Impact on the Severely Soil-Eroded Area by heavy Rainfall (집중호우로 인한 토양침식 우심지역 환경영향평가)

  • Hyun, Byung-Keun;Song, Kwan-Cheol;Jung, Sug-Jae;Sonn, Yeon-Kyu;Kim, Lee-Yeol;Kim, Sun-Kwan;Kwak, Han-Kang;Jung, Ji-Ho;Choi, Jung-Won;Jung, Ki-Yeol;Kim, Chun-Sig;Hyun, Geun-Soo;Pyeon, In-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.118-130
    • /
    • 2007
  • The steep-sloped agricultural land was severely damaged by rainfall events during July and August every year. The objective of this study was to investigate an effects of intensive rainfall to the soil properties of the steep-sloped agricultural land. Survey sites including the Sacheon myeon area were located in Gangneung, those were severely damaged from a forest fire in April 2000. Surveys were taken at these sites after two years of forest fire and severe rainfall events in August 2002, which included an event that poured with 870 mm of rainfall in a day. After this storm, soil erosion, burying, and flooding were observed. Severe soil loss was found at lower soil-depths, greater slopes, longer slope lengths, and concave landscapes. Soil loss and land slides were often found at areas with having a coarser textures, higher bulk densities, lower water holding capacity, and lower rates of soil aggregation. Crop growth stagnation was found at the site of crop restoration because of low soil fertility and poor drainage caused by the abrupt textural changes. In conclusion, it is necessary to manage the steep-slope agricultural land based on environmental impact assessment data of macro morphological and physical characteristics by intensive rainfall.