• Title/Summary/Keyword: Types of Detection Errors

Search Result 48, Processing Time 0.032 seconds

Performance Comparison of Several Pitch Detection Algorithm in Speech Signal (음성신호의 피치 검출에 관한 알고리즘의 성능 비교)

  • 김대현;유광복;이광형
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1984.04a
    • /
    • pp.5-8
    • /
    • 1984
  • Several pitch detection algorithms are studied and compared with the standard pitch detector in a terms of some kinds of errors and each of speaders. Various types of errors are defined, and rank the performance of pitch detectors.

  • PDF

Robust Pitch Detection Algorithm for Pathological Voice inducing Pitch Halving and Doubling (피치 반감 배가를 유발하는 병적인 음성 분석을 위한 강인한 피치 검출 알고리즘)

  • Jang, Seung-Jin;Choi, Seong-Hee;Kim, Hyo-Min;Choi, Hong-Shik;Yoon, Young-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1797-1798
    • /
    • 2007
  • In field of voice pathology, diverse statistics extracted form pitch estimation were commonly used to assess voice quality. In this study, we proposed robust pitch detection algorithm which can estimate pitch of pathological voices in benign vocal fold lesions. we also compared our proposed algorithm with three established pitch detection algorithms; autocorrelation, simplified inverse filtering technique, and nonlinear state-space embedding methods. In the database of total pathological voices of 99 and normal voices of 30, an analysis of errors related with pitch detection was evaluated between pathological and normal voices, or among the types of pathological voices. According to the results of pitch errors, gross pitch error showed some increases in cases of pathological voices; especially excessive increase in PDA based on nonlinear time-series. In an analysis of types of pathological voices classified by aperiodicity and the degree of chaos, the more voice has aperiodic and chaotic, the more growth of pitch errors increased. Consequently, it is required to survey the severity of tested voice in order to obtain accurate pitch estimates.

  • PDF

Development of a Multiple Linear Regression Model to Analyze Traffic Volume Error Factors in Radar Detectors

  • Kim, Do Hoon;Kim, Eung Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.253-263
    • /
    • 2021
  • Traffic data collected using advanced equipment are highly valuable for traffic planning and efficient road operation. However, there is a problem regarding the reliability of the analysis results due to equipment defects, errors in the data aggregation process, and missing data. Unlike other detectors installed for each vehicle lane, radar detectors can yield different error types because they detect all traffic volume in multilane two-way roads via a single installation external to the roadway. For the traffic data of a radar detector to be representative of reliable data, the error factors of the radar detector must be analyzed. This study presents a field survey of variables that may cause errors in traffic volume collection by targeting the points where radar detectors are installed. Video traffic data are used to determine the errors in traffic measured by a radar detector. This study establishes three types of radar detector traffic errors, i.e., artificial, mechanical, and complex errors. Among these types, it is difficult to determine the cause of the errors due to several complex factors. To solve this problem, this study developed a radar detector traffic volume error analysis model using a multiple linear regression model. The results indicate that the characteristics of the detector, road facilities, geometry, and other traffic environment factors affect errors in traffic volume detection.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

Development of a Real-time Error-detection System;The Case study of an Electronic Jacquard

  • Huh, Jae-Yeong;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2588-2593
    • /
    • 2003
  • Any system has the possibility of an error occurrence. Even if trivial errors were occurred, the original system would be fatally affected by the occurring errors. Accordingly, the error detection must be demanded. In this paper, we developed a real-time error detection system would be able to apply to an electronic Jacquard system. A Jacquard is a machine, which controls warps while weaving textiles, for manufacturing patterned cloth. There are two types of mechanical and electronic Jacquard. An electronic Jacquard is better than a mechanical Jacquard in view of the productivity and realizability for weaving various cloths. Recent weaving industry is growing up increasingly due to the electronic Jacquard. But, the problem of wrong weaving from error data exists in the electronic Jacquard. In this research, a real-time error detection system for an electronic Jacquard is developed for detecting errors in an electronic Jacquard in real-time. The real-time system is constructed using PC-based embedded system architecture. The system detects the occurring errors in real-time by storing 1344 data transferred in serial from an electronic Jacquard into memory, and then by comparing synchronously 1344 data stored into memory with 1344 data in a design file before the next data would be transferred to the Jacquard for weaving. The information of detected errors are monitored to the screen and stored into a file in real-time as the outputs of the system. In this research, we solve the problem of wrong weaving through checking the weaving data and detecting the occurred errors of an electronic Jacquard in real-time.

  • PDF

A Study on Automatic Detection of the Gross Errors on DSM Using Stereo Image Analysis (스테레오 영상분석에 기반한 DSM 과대오차영역의 자동검출기법연구)

  • Jeong, Jaehoon;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.487-497
    • /
    • 2013
  • In this paper, a method of using high resolution stereo images is proposed to efficiently detect DSM errors. Automatically generated DSMs from stereo matching can be a useful solution to acquire DSM data in various aspects but they may include many gross errors coming from automatic processing. Therefore, a method to detect the gross errors on DSM is required for efficient DSM update. In this paper, stereo analysis using high resolution stereo images was investigated to represent reliability of DSM grids. The analysis enabled automatic detection of the gross errors which greatly influenced DSM quality. We used the reference DSM to assess reliability of our proposed method. We confirmed from experimental results that our method can be a valuable DSM errors analysis for efficient DSM correction. Our method is useful to analyze and improve DSM accuracy for various types of DSM and DEM. It is expected that our approach can be exploited for achievement of reliable DSM and DEM.

An automatic 3D CAD model errors detection method of aircraft structural part for NC machining

  • Huang, Bo;Xu, Changhong;Huang, Rui;Zhang, Shusheng
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-260
    • /
    • 2015
  • Feature-based NC machining, which requires high quality of 3D CAD model, is widely used in machining aircraft structural part. However, there has been little research on how to automatically detect the CAD model errors. As a result, the user has to manually check the errors with great effort before NC programming. This paper proposes an automatic CAD model errors detection approach for aircraft structural part. First, the base faces are identified based on the reference directions corresponding to machining coordinate systems. Then, the CAD models are partitioned into multiple local regions based on the base faces. Finally, the CAD model error types are evaluated based on the heuristic rules. A prototype system based on CATIA has been developed to verify the effectiveness of the proposed approach.

A New Forest Fire Detection Algorithm using Outlier Detection Method on Regression Analysis between Surface temperature and NDVI

  • Huh, Yong;Byun, Young-Gi;Son, Jeong-Hoon;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.574-577
    • /
    • 2006
  • In this paper, we developed a forest fire detection algorithm which uses a regression function between NDVI and land surface temperature. Previous detection algorithms use the land surface temperature as a main factor to discriminate fire pixels from non-fire pixels. These algorithms assume that the surface temperatures of non-fire pixels are intrinsically analogous and obey Gaussian normal distribution, regardless of land surface types and conditions. And the temperature thresholds for detecting fire pixels are derived from the statistical distribution of non-fire pixels’ temperature using heuristic methods. This assumption makes the temperature distribution of non-fire pixels very diverse and sometimes slightly overlapped with that of fire pixel. So, sometimes there occur omission errors in the cases of small fires. To ease such problem somewhat, we separated non-fire pixels into each land cover type by clustering algorithm and calculated the residuals between the temperature of a pixel under examination whether fire pixel or not and estimated temperature of the pixel using the linear regression between surface temperature and NDVI. As a result, this algorithm could modify the temperature threshold considering land types and conditions and showed improved detection accuracy.

  • PDF

Performance Analysis of Automatic Mispronunciation Detection Using Speech Recognizer (음성인식기를 이용한 발음오류 자동분류 결과 분석)

  • Kang Hyowon;Lee Sangpil;Bae Minyoung;Lee Jaekang;Kwon Chulhong
    • Proceedings of the KSPS conference
    • /
    • 2003.10a
    • /
    • pp.29-32
    • /
    • 2003
  • This paper proposes an automatic pronunciation correction system which provides users with correction guidelines for each pronunciation error. For this purpose, we develop an HMM speech recognizer which automatically classifies pronunciation errors when Korean speaks foreign language. And, we collect speech database of native and nonnative speakers using phonetically balanced word lists. We perform analysis of mispronunciation types from the experiment of automatic mispronunciation detection using speech recognizer.

  • PDF