• 제목/요약/키워드: Type-2 RBFNNs

검색결과 6건 처리시간 0.018초

최적 Type-2 퍼지신경회로망 설계와 응용 (The Design of Optimized Type-2 Fuzzy Neural Networks and Its Application)

  • 김길성;안인석;오성권
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1615-1623
    • /
    • 2009
  • In order to develop reliable on-site partial discharge (PD) pattern recognition algorithm, we introduce Type-2 Fuzzy Neural Networks (T2FNNs) optimized by means of Particle Swarm Optimization(PSO). T2FNNs exploit Type-2 fuzzy sets which have a characteristic of robustness in the diverse area of intelligence systems. Considering the on-site situation where it is not easy to obtain voltage phases to be used for PRPDA (Phase Resolved Partial Discharge Analysis), the PD data sets measured in the laboratory were artificially changed into data sets with shifted voltage phases and added noise in order to test the proposed algorithm. Also, the results obtained by the proposed algorithm were compared with that of conventional Neural Networks(NNs) as well as the existing Radial Basis Function Neural Networks (RBFNNs). The T2FNNs proposed in this study were appeared to have better performance when compared to conventional NNs and RBFNNs.

(2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계 (Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm)

  • 오성권;진용탁
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.195-201
    • /
    • 2014
  • 본 연구에서는 $(2D)^2PCA$ 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템을 설계하였다. 기존의 1차원 PCA는 행과 열의 곱으로 표현한 이미지의 차원을 축소한다. 하지만 $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis)는 이미지의 행과 열에서 각각 차원축소를 수행한다. 그 다음 제안된 지능형 패턴분류기로 축소된 이미지를 사용하여 성능을 평가한다. (pRBFNNs)로 성능 평가를 한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세가지의 기능적 모듈로 구성되어 있고 조건는 퍼지 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 RBFNNs의 연결가중치로 일차 선형식으로 표현한다. 또한 차분진화 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다. 실험 평가를 위해 IC&CI 연구실 데이터를 추가하여 실험하였다.

기상레이더를 이용한 최적화된 Type-2 퍼지 RBFNN 에코 패턴분류기 설계 (Design of Optimized Type-2 Fuzzy RBFNN Echo Pattern Classifier Using Meterological Radar Data)

  • 송찬석;이승철;오성권
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.922-934
    • /
    • 2015
  • In this paper, The classification between precipitation echo(PRE) and non-precipitation echo(N-PRE) (including ground echo and clear echo) is carried out from weather radar data using neuro-fuzzy algorithm. In order to classify between PRE and N-PRE, Input variables are built up through characteristic analysis of radar data. First, the event classifier as the first classification step is designed to classify precipitation event and non-precipitation event using input variables of RBFNNs such as DZ, DZ of Frequency(DZ_FR), SDZ, SDZ of Frequency(SDZ_FR), VGZ, VGZ of Frequency(VGZ_FR). After the event classification, in the precipitation event including non-precipitation echo, the non-precipitation echo is completely removed by the echo classifier of the second classifier step that is built as Type-2 FCM based RBFNNs. Also, parameters of classification system are acquired for effective performance using PSO(Particle Swarm Optimization). The performance results of the proposed echo classifier are compared with CZ. In the sequel, the proposed model architectures which use event classifier as well as the echo classifier of Interval Type-2 FCM based RBFNN show the superiority of output performance when compared with the conventional echo classifier based on RBFNN.

방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계 : 전처리 알고리즘을 이용한 인식성능의 비교연구 (Design of Digits Recognition System Based on RBFNNs : A Comparative Study of Pre-processing Algorithms)

  • 김은후;김봉연;오성권
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.416-424
    • /
    • 2017
  • In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.

하수처리 공정을 위한 Type-2 RBF Neural Networks 모델링 설계 (Design of Type-2 Radial Basis Function Neural Networks Modeling for Sewage Treatment Process)

  • 이승철;권학주;오성권
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1469-1478
    • /
    • 2015
  • In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.

지능형 알고리즘을 이용한 재질별 검정색 플라스틱 분류기 설계 (Design of Classifier for Sorting of Black Plastics by Type Using Intelligent Algorithm)

  • 박상범;노석범;오성권;박은규;최우진
    • 자원리싸이클링
    • /
    • 제26권2호
    • /
    • pp.46-55
    • /
    • 2017
  • 본 연구에서는 레이저유도붕괴분광(Laser Induced Breakdown Spectroscopy, LIBS)을 이용하여 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks, RBFNNs) 분류기 설계방법론을 개발하고 실제 폐소형가전제품의 플라스틱 분류 시스템에 적용하였다. ABS, PP, PS와 같은 검정색 플라스틱을 구별하기 위해, 지능형 알고리즘 중 하나인 방사형 기저함수 신경회로망 분류기를 설계하였다. 획득한 입력변수는 주성분 분석법(Principal Component Analysis, PCA)을 이용하여 축소시켰으며, 군집화기법 중 하나인 K-means 클러스터링 방법을 이용해 여러 그룹으로 분할하였다. 전체 데이터는 학습 데이터와 테스트 데이터를 4:1의 비율로 나누었으며, 제안된 분류기의 성능 및 신뢰도를 평가하기 위하여 5-FCV(5-Fold Cross Validation) 기법을 사용하였다. 입력변수와 클러스터의 개수가 각각 5개인 경우, 제안된 분류기의 분류 성능은 96.78%로 나타났다. 또한, 제안된 분류기는 다른 분류기들과 비교하였을 경우 분류 성능의 관점에서 우수성을 보여주었다.