• Title/Summary/Keyword: Type Specimen

Search Result 1,385, Processing Time 0.026 seconds

Damage Characteristics of Metal Materials According to the SO2 Concentration (이산화황 농도에 따른 금속시편의 손상 특성)

  • Kim, Myoung Nam;Lim, Bo A;Shin, Eun Jeong;Lee, Sun Myung
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.176-187
    • /
    • 2013
  • A study has been carried out on metal materials in order to identify the quantitative relation between the concentration and damage characteristics after evaluation of the damage characteristics according to the $SO_2$ concentration. The prepared metal samples, which were categorized according to the material (silver, copper, iron, lead, brass) were exposed to 0.01, 0.12, 1, 10, 100, 1,000, and 5,000ppm of $SO_2$ for 24 hours and the optical, physical, chemical deterioration rates both before and after testing were evaluated. The results showed optical deterioration, a loss of gloss on silver specimen with $SO_2$ 100ppm, an increase of color difference on brass, iron, copper and lead specimens with $SO_2$ 5,000ppm, as well as physical changes such as an increase of thickness and corrosion rate on iron sample with $SO_2$ 5,000ppm. In the case of chemical changes such as an increase sulfate ion ($SO{_4}^{2-}$) concentration and decrease of pH on iron and brass specimens were identified. These results suggest that $SO_2$ 100ppm caused clear optical deterioration on some metals such as silver and physicochemical and optical deterioration were identified at $SO_2$ 5,000ppm regardless of metal type. Also, It was concluded that iron and brass are the most susceptible of the metal specimens to $SO_2$.

Effects of Fine Aggregate Size on Penetration Performances of SSPM (잔골재의 입도분포가 SSPM의 침투성능에 미치는 영향)

  • Yoon, Hyun-Kwang;Youn, Da-Ae;Lee, Chan-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2019
  • This study was conducted to evaluate the penetration performance of the Silane Surface Protection Material (SSPM) penetrating the micro pore of concrete surface. The results was indicated microstructure, porosity and penetration depth of applied SSPM. Silica sand and conventional sand were used as fine aggregate in mortar. And liquid and cream types SSPM were used. The amounts of SPM were applied the 127, 255, 382, 510 g/m2 on the surface of mortar. The penetration depth specimens were made with $100{\times}30mm$ in according with KS F 4930. Penetration depth was evaluated according to KS F 4930, divide specimen and then spraying with water in cross section of specimens, and measure the depth of the non-wetted area. The microstructure result of mortar applied SSPM, it was obtained liquid and cream SSPM in mortar. The porosity results of SSPM application specimens were improved with than that of plain specimens. Test results indicated that the penetration depth of SPM were improved with increasing in amounts of SSPM. As a result of test, application of SSPM to concrete surface, it will improve durability.

Comparison of the Microleakage and Shear Bond Strength to Dentine of Different Tricalcium Silicate-based Pulp Capping Materials (Tricalcum-silicate 기반 치수복조제의 미세누출 및 상아질 전단결합강도 비교)

  • Kim, Miri;Jo, Wansun;Jih, Myeongkwan;Lee, Sangho;Lee, Nanyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.76-84
    • /
    • 2019
  • This study evaluated the microleakage of three restorative materials and three tricalcium silicate-based pulp capping agents. The restorative materials were composite resin (CR), resin-reinforced glass ionomer cement (RMGI), and traditional glass ionomer cement (GIC) and the pulp capping agents were TheraCal $LC^{(R)}$ (TLC), $Biodentine^{(R)}$ (BD), and $ProRoot^{(R)}$ white MTA (WMTA). Additionally, shear bond strengths between the pulp-capping agents and dentine were compared. Class V cavities were made in bovine incisors and classified into nine groups according to the type of pulp-capping agent and final restoration. After immersion in 0.5% fuchsin solution, each specimen was observed with a stereoscopic microscope to score microleakage level. The crowns of the bovine incisors were implanted into acrylic resin, cut horizontally, and divided into three groups. TLC, BD and WMTA blocks were applied on dentine, and the shear bond strengths were measured using a universal testing machine. The microleakage was lowest in TLC + GIC, TLC + RMGI, TLC + CR, and BD + GIC groups and highest in WMTA + RMGI and WMTA + CR groups. The shear bond strength of BD group was the highest and that of WMTA group was significantly lower than the others.

The taxonomic entity and distribution of Korean Sedum formosanum (Crassulaceae) revealed in 133 years (133년만에 밝혀진 한국산 주걱잎갯비름(돌나물과)의 분류학적 실체 및 분포)

  • CHOI, Seung Se;KIM, Jonghwan;KIM, Chul Hwan
    • Korean Journal of Plant Taxonomy
    • /
    • v.50 no.4
    • /
    • pp.377-384
    • /
    • 2020
  • Korean Sedum formosanum N. E. Br. (Ju-geog-nip-gaet-bi-reum in Korean) was first recorded in 1887, 133 years ago. Since then, the species has not been collected and its current state has remained unclear. However, these plants were collected in 2020 and the corresponding taxonomic entity and distribution status were revealed. It is known to be distributed only in the southern region of Japan, the northern islands of the Philippines, and in Taiwan, with Taiwan being the collection site of the type specimen. However, on the basis of the findings of the fourth national natural environment survey, it has recently been established that this plant also grows in the crevices of rocks along the seashores of the Korean islands of Hataedo Island and Sangtaedo Island, Sinan-gun, Jeollanam-do. S. formosanum inhabiting Korea is a large succulent biennial that can attain a height of up to 65 cm and differs from its congeneric species in having erect follicles during the fruiting period. Notably, among the Korean Sedum species, S. formosanum is most similar to S. tosaense, although it can be distinguished from this species with respect to its monomorphic leaves that have rounded apices, and it also bears separate flowering and sterile stems. In this paper, we present a description and photographs of the Korean S. formosanum, indicate the differences between this and related species, and provide a key to related taxa.

Pathological Factors Affecting DNA Quality in BRAF, EGFR, and KRAS Gene Molecular Tests (BRAF, EGFR, KRAS 유전자 분자병리검사에서 DNA 품질에 영향을 미치는 병리학적인 인자에 관한 연구)

  • Yun, Hyon-Goo;Kim, Bo-Ra;Lee, Joo-Mi;Song, Eun-Ha;Kim, Dong-Hoon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.381-388
    • /
    • 2020
  • The quality control of pathological specimens is important for accurate molecular pathology testing. This study evaluated that specimen factors affecting the DNA quality during tissue processing and sample types for BRAF, EGFR, and KRAS mutations tests. One thousand seven hundred and seventy-two molecular pathology tests were investigated for the factors influencing the DNA quality, such as sample type, formalin fixation time, and reexamination status. Cytology samples stored in a saline solution had better DNA quality than commercial cytology preservation. Tissue samples fixed in formalin within 24 hours had better DNA quality than the samples fixed over 24 hours. Between the types of samples, fresh tissue samples and tissue samples with a high tumor cell density had relatively better DNA quality than the formalin-fixed paraffin-embedded (FFPE) tissues and cytology specimens. Of real-time PCR, the non-PNA Ct value increased proportionally with samples held for longer than 24 hours in formalin, and that the formalin-fixed time affects the sample DNA quality. In conclusion, the appropriate tumor cellularity and 10% neutral formalin fixation time are the most important factors for maintaining the DNA quality. These factors should be managed properly for an accurate pathological molecular test to ensure optimal DNA quality.

Effects of thickness and background on the masking ability of high-trasnlucent zirconias (고투명도 지르코니아의 두께 및 하부 배경에 따른 색조 차단 효과)

  • Kim, Young-Gon;Jung, Ji-Hye;Kong, Hyun-Jun;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.199-208
    • /
    • 2021
  • Purpose: The purpose of this study was to compare and evaluate the masking ability of three types of high translucent zirconia according to the various thicknesses and backgrounds. Materials and Methods: Using three types of high-translucency zirconia (Ceramill zolid fx white, Ceramill zolid ht+ white, Ceramill zolid ht+ preshade A2), 10 cylindrical specimens were fabricated in 10mm diameter and each with four thicknesses (0.6 mm, 1.0 mm, 1.5 mm, 2.0 mm), respectively by CAD/CAM method. The background was 10 mm in diameter and 10 mm in thickness. A1, A2, A3 flowable resin backgrounds, blue-colored core resin background, and Ni-Cr alloy background were prepared, and black, white backgrounds provided by the spectrophotometer manufacturer (x-rite, Koblach, Austria) were used. zirconia specimens and the background specimen were stacked to measure L, a*, b* with Spectrophotometer (Color i5, x-rite, Koblach, Austria) and the ΔE value with the other background is calculated. The Calculated mean ΔE values were compared based on perceptibility threshold 1.0 and acceptability threshold 3.7. Nonparametric tests such as Kruskal-Wallis test were performed to verify statistical significance (α = 0.05). Results: There was a significant difference in the mean ΔE value according to the zirconia type, background and thickness change (P = 0.000). Conclusion: According to the results of this study, the pre-colored high-translucent zirconia can obtain the desired zirconia shade when it is restored on teeth, composite resins, and abutments except for the blue resin core.

Development of Embedded Type Sensor Module for Measuring Stress of Concrete Using Hetero-core Optical Fiber (헤테로코어 광섬유를 이용한 콘크리트 응력 측정용 매립형 센서모듈의 개발)

  • Yang, Hee-Won;Lee, Hwan-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.68-75
    • /
    • 2022
  • In this study, in order to directly evaluate the prestress of the PSC structure, a new sensor module based on the measurement of the deformation of concrete was proposed using hetero-core optical fibers and performance tests were performed. In a hetero-core optical fiber, optical loss occurs when a specific part of the transmission path is bent, and the amount of optical loss changes linearly according to the magnitude of the curvature. In order to confirm the measurement performance of the sensor module and the applicability of the optical fiber, the sensor module was deformed and the light passing through the optical fiber was converted into wattage and measured. It can be seen that the light passing through the optical fiber has a linearity of 0.9333 in relation to the deformation while generating the maximum deformation of 0.5 mm at a rate of 0.12 mm/min in a cylindrical concrete specimen with a diameter of 15 cm and a height of 35 cm in which the sensor module is embedded. Based on the results of this experiment, it is judged that it is possible to directly evaluate the prestress of a PSC structure by embedding a sensor module using a hetero-core optical fiber in the structure and measuring the compression deformation in concrete. It is judged that it can be used as useful data for the development of a sheath tube integrated sensor module to be applied to be applied to the girder model experiment.

A laboratory pressurized vane test for evaluating rheological properties of excavated soil for EPB shield TBM: test apparatus and applicability (EPB 쉴드 TBM 굴착토의 유동학적 특성 평가를 위한 실내 가압 베인시험: 장비 개발과 적용성 평가)

  • Kwak, Junho;Lee, Hyobum;Hwang, Byeonghyun;Choi, Junhyuk;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.355-374
    • /
    • 2022
  • Soil conditioning improves the performance of EPB (earth pressure balance) shield TBMs (tunnel boring machines) by reducing shear strength, enhancing workability of the excavated soil, and supporting the tunnel face during EPB tunnelling. The mechanical and rheological behavior of the excavated muck mixed with additives should be properly evaluated to determine the optimal additive injection condition corresponding to each ground type. In this study, the laboratory pressurized vane test apparatus equipped with a vane-shaped rheometer was developed to reproduce the pressurized condition in the TBM chamber and quantitively evaluate rheological properties of the soil specimens. A series of the pressurized vane tests were performed for an artificial sand soil by changing foam injection ratio (FIR) and polymer injection ratio (PIR), which are the injection parameters of the foam and the polymer, respectively. In addition, the workability of the conditioned soil was evaluated through the slump test. The peak and yield stresses of the conditioned soil with respect to the injection parameters were evaluated through the rheogram, which was derived from the measured torque data in the pressurized vane test. As FIR increased or PIR decreased, the workability of the conditioned soil increased, and the maximum torque, peak stress, and yield stress decreased. The peak stress and yield stress of the specimen from the laboratory pressurized vane test correspond to the workability evaluated by the slump tests, which implies the applicability of the proposed test for evaluating the rheological properties of excavated soil.

Experimental Evaluation of the Flexural Behavior of SY Permanent Steel Form for RC Beam and Girder (SY 비탈형 보 거푸집의 휨 거동에 대한 실험적 고찰)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Currently, in the domestic construction industry, the free web method has been emerging as a potential solution to the shortage of skilled workers due to the prolonged COVID-19 crisis, as it helps in securing economic feasibility through shortening the construction period and reducing labor costs. To consider one part of the construction method, in this study, the bending behavior according to the load was evaluated for the SY slope-type beam formwork, which was manufactured at a factory, assembled with rebar, brought into the site, and then poured into the site. For the SY Beam standard cross-sectional shape, a cross-sectional dimensional width of 400mm and depth 600mm determined through structural modeling using the MIDAS GEN program were applied. A total of 6 specimens were made with a member length of 5,000mm, 5 specimens and one RC specimen in the comparison group were manufactured in real-size format using the thickness of the steel plate(0.8, 1.0, 1.2mm) as a variable, and bending experiments were performed. In the bending test, the steel plate deck showed high initial stiffness and maximum strength as it yielded, which showed that it sufficiently contributed to the flexural strength. It is judged that additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are needed to derive the appropriate steel plate thickness and the method for calculating the tensile force contribution of the steel plate to secure the manufacturing, construction and economic feasibility of SY Beam in the future.

Evaluation of Rheological Properties and Acceptance Criteria of Solidifying Agents for Radioactive Waste Disposal Using Waste Concrete Powder (폐콘크리트를 재활용한 방사성 폐기물용 고화제의 레올로지 특성 및 인수기준 특성평가)

  • Seo, Eun-A;Kim, Do-Gyeum;Lee, Ho-Jea
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.276-284
    • /
    • 2022
  • In this study, performance evaluation and rheological characteristics were analyzed for recycling the fine powder of nuclear power plant dismantled waste concrete as a solidifying agent for radioactive waste disposal. The radioactive concrete fine powder was used to prepare a simulated sample, and the test specimen was prepared using Di-water, CoCl2, and 1 mol CsCl aqueous solution as mixing water. Regardless of the aggregate mixing ratio and the type of mixing water, it satisfies the performance standard of 3.45 MPa for compressive strength at 28 days of age. All specimens satisfied the criteria for submersion strength, and the thermal cycle compressive strength satisfies the criteria for all specimens except Plain-50. As a result of evaluating the rheological properties of the solidifying agent, it was found that the increase in the aggregate mixing rate decreased the yield stress and plastic viscosity. The leaching index for cobalt and cesium of all specimens was 6 or higher, which satisfies the standard. In order to secure the stable performance of the solidifying agent, it is considered effective to use 40 % or less of the aggregate component in the solidifying agent.