• 제목/요약/키워드: Type IV secretion system (T4SS)

검색결과 3건 처리시간 0.019초

Structure and Function of the Autolysin SagA in the Type IV Secretion System of Brucella abortus

  • Hyun, Yongseong;Baek, Yeongjin;Lee, Chanyoung;Ki, Nayeon;Ahn, Jinsook;Ryu, Sangryeol;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • 제44권7호
    • /
    • pp.517-528
    • /
    • 2021
  • A recent genetic study with Brucella abortus revealed the secretion activator gene A (SagA) as an autolysin component creating pores in the peptidoglycan (PGN) layer for the type IV secretion system (T4SS) and peptidoglycan hydrolase inhibitor A (PhiA) as an inhibitor of SagA. In this study, we determined the crystal structures of both SagA and PhiA. Notably, the SagA structure contained a PGN fragment in a space between the N- and C-terminal domains, showing the substrate-dependent hinge motion of the domains. The purified SagA fully hydrolyzed the meso-diaminopimelic acid (DAP)-type PGN, showing a higher activity than hen egg-white lysozyme. The PhiA protein exhibiting tetrameric assembly failed to inhibit SagA activity in our experiments. Our findings provide implications for the molecular basis of the SagA-PhiA system of B. abortus. The development of inhibitors of SagA would further contribute to controlling brucellosis by attenuating the function of T4SS, the major virulence factor of Brucella.

Comparative Analysis of T4SS Molecular Architectures

  • Mishghan Zehra;Jiwon Heo;Jeong Min Chung;Clarissa L Durie
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1543-1551
    • /
    • 2023
  • The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.

Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host

  • Ma, Zhongchen;Yu, Shuifa;Cheng, Kejian;Miao, Yuhe;Xu, Yimei;Hu, Ruirui;Zheng, Wei;Yi, Jihai;Zhang, Huan;Li, Ruirui;Li, Zhiqiang;Wang, Yong;Chen, Chuangfu
    • Journal of Veterinary Science
    • /
    • 제23권1호
    • /
    • pp.8.1-8.15
    • /
    • 2022
  • Background: Brucella infection induces brucellosis, a zoonotic disease. The intracellular circulation process and virulence of Brucella mainly depend on its type IV secretion system (T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through interaction with proteins. However, the mechanism of BspJ as it affects the intracellular survival of Brucella remains to be clarified. Objectives: To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection cycles. Methods: Constructed Brucella abortus BspJ gene deletion strain (B. abortus ∆BspJ) and complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella both in vivo and in vitro. Results: BspJ gene deletion reduced the survival and intracellular proliferation of Brucella at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent strain, the colonization ability of the bacteria in mice was significantly reduced, causing less inflammatory infiltration and pathological damage. We also found that the knockout of BspJ altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella. Conclusions: BspJ is extremely important for the circulatory proliferation of Brucella in the host, and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.