• Title/Summary/Keyword: Type C tank

Search Result 163, Processing Time 0.033 seconds

An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

  • Lee, Jin-Sung;You, Won-Hyo;Yoo, Chang-Hyuk;Kim, Kyung-Su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.580-597
    • /
    • 2013
  • Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low ($-100^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083-O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

An Experimental Study on Thermal Performance of Thermosyphon Solar Hot Water System (자연대류형 태양열 온수급탕 시스템의 열적성능에 관한 실험적 연구)

  • Jeon, H.S.;Kang, Y.H.;Yoon, H.K.;Kwak, H.Y.
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.3-13
    • /
    • 1989
  • This study has been conducted to measure the performance of 5 thermosyphon solar water heaters suitable for Korean climate and to develop the most optimum system. Each system consists of two flat plate collectors of $4'{\times}8'$ (or three flat plate collectors of $3'{\times}6'$) connected in parallel and a storage tank of $300{\ell}$ capacity. Among the tested systems, the configuration that has two flat plate collectors of $4'{\times}8'$ and a horizontal tank-in-tank type storage unit with internal fins (C system) showed the highest performance.

  • PDF

An Experimental Study on Characteristics of Heat Flow in the Cylindrical Storage Tank with Ice Ball (Ice Ball을 내장(內裝)한 빙축열조내(氷蓄熱槽內)의 열유동(熱流動) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Jang, Y.G.;Lee, W.S.;Pak, J.W.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.99-109
    • /
    • 1998
  • The study on ice thermal storage system is to improve total system performance in actual air-conditioning facilities. To attain the high efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therfore the process flow must be piston flow in thermal storage tank. Ice packing factor is better on condition that the inflowing temperature is low, the flow direction in the thermal storage is upward and the cylindericalthermal storage type is used. This result shows that the cylinderical ice storage tank has better storage capacity than the rectangular type in case of the same porocity.

  • PDF

An Experimental Study on the Heat Transfer Characteristics during the Freezing Process of Water in the Vertical Multi Tube Type Ice Storage Tank (수직다발관형 빙축열 탱크내 물의 응고과정시 열전달특성에 관한 연구)

  • Kim, Y.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 1998
  • In this study, basic design data which were required for development of highly efficient ice storage system with low temperature latent heat were experimentally obtained. The ice storage system considered in this study was the one that has been widly used in the developed country and called the ice-on-coil type. Using the system, the ice storage performance for various design parameters which were the flow direction and the inlet temperature of the secondary fluid was tested. In addition, the timewise variation of the interface profiles between the solid and the liquid were visualized, and the heat transfer characteristics of the Phase Change Material(PCM) in the ice storage tank were Investigated. During the freezing processes in the ice storage tank with several vertical tubes, decrease of the heat transfer area and the heat resistance of the ice layer made the increasing rate of ice packing factor(IPF) less. The total freezing energy for the upward flow of the secondary fluid was higher than that for the downward flow. The average ice storage efficiency for the upward flow of the secondary fluid was higher than that for the downward flow.

  • PDF

An Experimental Study on the Tensile and Fatigue Strengths of SUS304L Lap Joint Weld at the Cryogenic Temperature (SUS304L 겹침 용접부에 대한 극저온에서의 인장 및 피로강도에 관한 실험적 연구)

  • Kim, Kyung-Su;Boo, Seung-Hwan;Park, Chang-Youl;Cho, Young-Gun;Lee, Jeung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.96-102
    • /
    • 2008
  • As LNG tank is operated around $-162^{\circ}C$, an experimental approach on the cryogenic temperature tensile and fatigue strengths of SUS304L lap joint weld is very important at the design stage of membrane type LNG tank. In this study, in order to estimate the tensile and fatigue strengths of SUS304L lap joint weld at cryogenic temperature condition, tensile and fatigue tests were conducted. Also, S-N curves are presented with statistical testing method recommended by JSME. As a result of the experimental approach, the d£sign guide of fatigue strength is proposed and that is expected to be useful for membrane type LNG tank design.

Experimental Analysis of Boil-Off Gas Occurrence in Independent Liquefied Gas Storage Tank (독립형 액화가스 저장탱크의 BOG 발생에 대한 실험적 분석)

  • Cha, Seung-Joo;Bae, Jin-Ho;Lee, Dong-Ha;Kim, Tae-Wook;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.380-385
    • /
    • 2018
  • With the tightening of environmental regulations (i.e., IMO Tier III), natural gas (NG) has been spotlighted as an eco-friendly fuel with few air pollutants other than nitrogen oxides (NOx) and sulfur oxides (SOx). For reasons of economic efficiency, it is mainly stored and transported in a liquid state at $-163^{\circ}C$, which is a cryogenic temperature, using a liquefied gas storage tank. Accordingly, it is necessary to reduce the boil-off gas (BOG) occurrence due to the heat flow according to the temperature difference between the inside and outside of the storage tank. Therefore, in this study, a BOG measurement test on an independent-type storage tank made up of SUS304L was carried out. The test results showed the tendency for BOG occurrence according to the temperature under different filling ratios.

The optimal design of electronic ballasts for triple-type compact fluorescent lamps considering variation of ambient temperatures (주위온도를 고려한 트리플형 콤팩트 형광램프용 전자식 안정기의 최적 설계)

  • Song, Sang-Bin;Gwark, Jae-Young;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.434-436
    • /
    • 1996
  • This paper investigates the optimal design of an electronic ballast of half bridge inverter type in consideration of the variation of ambient temperatures for a 15[W] triple-type compact fluorescent lamp. The performances of electronic ballasts under different values or the capacitance ratio in the resonant tank circuit are compared with each other in the practical temperature range between 15[$^{\circ}C$] and 35[$^{\circ}C$] to determine its optimum value. As a result, the optimum value is found to be such that $C_1/C_2=10$ at which value starting of the lamp is most stable and light output reaches its maximum value with lowest variation.

  • PDF

On the Leakage Safety Analysis of $9\%$ Nickel Type LNG Storage Tank with Thermal Resistance Effects (열저항 효과를 고려한 $9\%$ 니켈강재식 LNG 저장탱크의 누설 안전성에 관한 연구)

  • Kim C.K.;Cho S.H.;Suh H.S.;Hong S.H.;Lee S.R.;Kim Y,G.;Kwon B.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, the FE analysis has been presented for the leakage safety of $9\%$ nickel type LNG storage tank based on the thermal resistance effects between insulation panels, comer protection and prestressed concrete(PC) structures. The FEM calculated results show that the leakage safety of fiber glass blanket, perlite powder and cellular glass insulators does not guarantee any more due to a strength failure of the insulation structure. But the corner protection and PC structure of outer tank may delay or sustain the leaked LNG of 10 days even though the inner tank and insulation structure are simultaneously failed. This means that $9\%$ nickel steel type LNG storage tank may be safe because of a high strength of the corner protection and outer tank structures.

  • PDF

Performance Analysis of Water-Water Heat Pump System of 100 kW Scale for Cooling Agricultural Facilities

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.34-38
    • /
    • 2014
  • Purpose: In this study, the performance of cooling system with the water-water heat pump system of 100kW scale made for cooling agricultural facilities, especially for horticultural facilities, was analyzed. It was intended to suggest performance criteria and performance improvement for the effective cooling system. Methods: The measuring instruments consisted of two flow meters, a power meter and thermocouples. An ultrasonic and a magnetic flow meter measured the flow rate of the water, which was equivalent to heat transfer fluid. The power meter measured electric power in kW consumed by the heat pump system. T-type thermocouples measured the temperature of each part of the heat pump system. All of measuring instruments were connected to the recorder to store all the data. Results: When the water temperature supplied into the evaporator of the heat pump system was over $20^{\circ}C$, the cooling Coefficient Of Performance(COP) of the system was higher than 3.0. As the water temperature supplied into the evaporator, gradually, lowered, the cooling COP, also, decreased, linearly. Especially, when the water temperature supplied into the evaporator was lower than $15^{\circ}C$, the cooling COP was lower below 2.5. Conclusions: In order to maintain the cooling COP higher than 3.0, we suggest that the water temperature supplied into evaporator from the thermal storage tank should be maintained above $20^{\circ}C$. Also, stratification in the thermal storage tank should be formed well and the circulating pumps and the pipe lines should be arranged in order for the relative low-temperature water to be stored in the lower part of the thermal storage tank.

Experimental Study of a Low Cost Batch Type Solar Water Heater (저가 Batch형 온수급탕시스템의 실험적 연구)

  • Lee, K.D.;Yoon, H.G.;Kong, Y.H.;Lee, R.J.;Auh, P.C.M.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.60-69
    • /
    • 1985
  • A low cost batch type solar heaters (capacity 200 litres) comprising horizontal tanks, which performs the dual function of absorbing heat and storing the heated water, have been designed and fabricated for the purpose of side-by-side testing. Experimental results have indicated that the sufficient hot water can be obtained in the early morning if the glazing is aided by a reflector/insulation cover. The water heater with best thermal performance such as type B supplied water at a maximum mean temperature of $46-49^{\circ}C$ in the summer afternoon and the temperature of $36-39^{\circ}C$ can be obtained in the early morning if insulation cover is used during night time. The equation has been developed for the prediction of hourly variation of the water temperature in the tank.

  • PDF