• 제목/요약/키워드: Type 3 Tank

검색결과 334건 처리시간 0.027초

경화온도와 자긴 압력이 Type 3 극저온 추진제 탱크에 미치는 영향 연구 (Effect of Curing Temperature and Autofrettage Pressure on a Type 3 Cryogenic Propellant Tank)

  • 강상국;김명곤;공철원;김천곤
    • Composites Research
    • /
    • 제19권4호
    • /
    • pp.31-38
    • /
    • 2006
  • 본 연구에서는 열탄성 해석과 복합재/알루미늄 링시편 실험을 통해 성형 온도와 자긴 압력이 복합재와 알루미늄 라이너로 구성된 Type 3 극저온 추진제 탱크에 미치는 영향을 살펴보았다. 우선 Type 3 탱크의 온도분포를 구한 뒤 이를 경계조건으로 사용하여 성형온도와 자긴 압력의 영향을 고려한 탄성해석을 수행하였다. 그 결과 복합재의 성형온도가 증가할수록 복합재와 알루미늄 라이너에 각각 잔류압축응력과 잔류인장응력이 증가하였다. 한편 자긴 압력은 극저온 환경에 의해 유발된 잔류열응력의 감소를 초래하였으며 자긴 압력의 크기가 증가할수록 이러한 경향은 두드러졌다. 이러한 성형 온도와 자긴 압력의 영향은 Type 3 극저온 추진제 탱크의 설계 및 제작 단계에 반드시 고려되어야 한다.

멤브레인 방식 LNG탱크의 피로강도 평가법에 관한 연구 (I) (A Study on the Evaluation Method of Fatigue Strength of Membrane Type LNG Tank(I))

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권1호
    • /
    • pp.49-58
    • /
    • 1997
  • The membrane type LNG tank is non self-supporting tank which consists of both primary and secondary membrane supported through the insulation boxes by the adjacent hull struc¬ture. Although the membranes are not structural member. They are subject to periodical cyclic loads due to the thermal expansion and other expansions or contraction of membrane. At the design stage of the tank, an analytical and experimental approach on the fatigue strengths of membrane and its welds is necessary in order to assist the designer and the inpector. In this study the evaluation method of fatigue strength of membrane type LNG tank is pre¬sented with FEM analysis and fatigue test of lap welds and it contains the following:1) The fatigue tests and preparation of design S - N curve for lap welds 2) FEM analysis of test specimens 3) Estimation of cumulative damage factor of lap welds 4) Guideline for inspection of lap welds of membrane type LNG tank As the results of analytical and experimental approaches in this study, the evaluation method of fatigue strengths of membrane type LNG tank is proposed, which is expected to be useful for design and inspection of membrane type LNG tank.

  • PDF

태양열 급탕 난방 복합 축열조 열성능 (Thermal Performance of Solar Hot Water and Space Heating in a Combi - Storage Tank)

  • 곽희열;주홍진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.266-269
    • /
    • 2009
  • The Purpose of this study was thermal performance of solar hot water and space heating thermal storage tank. The combi storage tank was designed Tank in Tank type. The tank volume for space heating was 700 $\ell $ and tank volume for hot water was 150 $\ell $. Tank in Tank type storage tank was to replace heat exchange to hot water tank. The result showed that the Heating value was 67.25MJ and domestic hot water value was 51.93MJ. Supply to the hot water volume was 521 $\ell $ more than about 3 times as that of the hot water tank volume.

  • PDF

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • 제77권3호
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

전산 유체 역학(CFD)을 이용한 원형 양식 사육 수조 내부 유동장 해석 (Analysis of land-based circular aquaculture tank flow field using computational fluid dynamics (CFD) simulation)

  • 권인영;김태호
    • 수산해양기술연구
    • /
    • 제56권4호
    • /
    • pp.395-406
    • /
    • 2020
  • The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.

유출수 및 유실토량 측정장치에 관한 수리시험 (Hydraulic Experiments on the Measuring Equipments of Ronoff and Soil Loss)

  • 유한열
    • 한국농공학회지
    • /
    • 제10권1호
    • /
    • pp.1377-1387
    • /
    • 1968
  • In order to measure runoff and soil losses produced in a small test plot during rainfall, it is usually insufficient to use a tank only, necessitating the combined use of a main tank and a subsidiary tank. Accordingly. exact measurement largely depends on how to connect those two measuring tanks. The main purpose of this thesis is to improve the connecting parts of two measuring tanks so as to assure exact measurement of runoff and soil losses. In this experiment, two types of main tank, i. e. A-type and B-type, were used. A-type is a square tank having a flume at its end. At the flume, ten apertures are provided by using metal columns so as to be able to catch one tenth of total muddy flow discharging at the end of the flume, One tenth of total flow is led to the subsidiary tank through a slot sampler fixed to an aperture. B-type differes in that its flume does not have apertures and slot sampler is fixed directly to the end of the flume, other features being the same as those of A-type. Discharge volumes were measured by using weighing tanks and compared. The effect of baffle screen provided in the flume was also observed in connection with exact measurements. In order to keep main tank and its flume in a horizontal position, bolts and nuts mechanism was used. Vertical and horizontal screens were provided in the main to prevent coarse sands coming into the flume. The conclusion derived through this experiment is as follows: (1) The discharge through slot sampler at each aperture is almost the same for A-type. However, it is slightly more than one tenth of total discharge volume. (2) In case that baffle screen is provided in the flume of A-type tank, the discharge volume of slot sampler is less than that of the same type without screen. (3) For B-type tank, slot sampler discharge increases as slot sampler nears toward the center of flume. (4) When baffle screen is provided in the flume of B-type, slot sampler discharge is less than that of the same type without screen, and this phenomenon is more apparent as compared with A-type. (5) In case that the slot width of slot sampler for B-type is one inch, slot sampler discharge exceeds one tenth of total discharge volume. (6) When the slot width for B-type is 15/16 inch and slot sampler is fixed 3/8 inch apart from either flume wall, slot sampler discharge is approximately equal to one tenth of total discharge volume.

  • PDF

타입 3 극저온 추진제 탱크의 액체질소저장 시험 및 파손 분석 (LN2 storage test and damage analysis for a Type 3 cryogenic propellant tank)

  • 강상국;김명곤;박상욱;공철원;김천곤
    • 한국항공우주학회지
    • /
    • 제35권7호
    • /
    • pp.592-600
    • /
    • 2007
  • 최근에 발사체의 경량화를 위해 추진제 탱크의 재료를 복합재료로 대체하기 위한 연구가 많이 진행되고 있다. 본 연구에서는 극저온용으로 개발된 복합재와 알루미늄 라이너로 구성된 타입 3 추진제 탱크를 제작하고 실제 극저온 상태의 운용환경을 고려한 실험을 수행하였다. 이를 위해 액체 질소를 제작된 타입 3 탱크에 주입하고 기체 질소를 이용하여 가압하였다. 실험수행과정에서 헬리컬 층과 후프 층 사이에서 층간 분리 현상이 관찰되었으며, 이에 대한 원인을 분석하기 위해 해석적 방법과 실험적 방법이 사용되었다. 해석적 방법에서는 점진적 파손 해석을 고려한 열탄성 해석으로부터 파손 지수를 평가하였으며 실험적 방법에서는 타입 3 탱크를 쉽게 모사할 수 있는 복합재/알루미늄 링 시편의 액체질소 담금 시험을 통해 헬리컬 층과 후프 층 사이의 계면을 관찰하였다.

한국산 Rotifer, Brachionus plicatilis (L과 S-type)의 내구란 대량생산 (Mass Production of Resting Egg of Korean Rotifer, Brachionus plicatilis (L and S-type))

  • 허성범;박흠기
    • 한국양식학회지
    • /
    • 제9권4호
    • /
    • pp.345-351
    • /
    • 1996
  • 한국산 B. plicatilis, L-type rotifer와 S-type rotifer의 내구란 대량생산은 L-type rotifer의 경우 15일 동안 농축 Chlorella + 빵효모 혼합구와 빵효모 단독구로 하였고 S-type rotifer는 7일동안 1 $m^3$ 수조에서 농축 Chlorella로, $6{\~}8$일 동안 4 $m^3$ 수조에서 냉동 농축 Chlorella + 빵효모로 대량생산하였다. L-type rotifer 내구란 대량생산 실험에서 농축 Chlorella + 빵효모 혼합구가 총 내구란 생산 $54.5{\times}10^6$개, $10^{8}$ rotifers 당 내구란 생산 $30.5{\times}10^6$개, 먹이 건조 중량 1g 당 내구란 생산 $100{\times}10^3$개로 빵효모 단독구 보다 높게 나타났다. S-type rotifer의 내구란 대량생산은 4 $m^3$ 수조에서 냉동 농축 Chlorella + 빵효모를 먹이로 총 내구란 생산 $149{\~}567{\times}10^6$개, $10^{8}$ rotifers당 내구란 생산 $36{\~}123{\times}10^6$개, 먹이 건조 중량 1 g당 내구란 생산 $131{\~}338{\times}10^3$개를 생산하여 1 $m^3$ 수조에서 농축 Chlorella를 단독 먹이로 생산한 경우 보다 높았다.

  • PDF

LNG탱크 겹침용접부의 피로강도에 관한 연구 (A Study on the Fatigue Strength of Lap Weld of LNG Tank)

  • 김종호
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.29-35
    • /
    • 1999
  • At the design of Mark III membrane type LNG tank, an analytical and experimental approach on the fatigue strengths of membrane and its welds are very important in order to assist designers and surveyors. In this study, fatigue tests of lap weld of Mark III membrane type LNG tank were carried out and cumulative damage factor was calculated in order to estimate the fatigue life by probability density function and rule methods. It contained the following tests and reviews : 1) The fatigue tests of lap weld of stainless steel according to statistical testing method recommended by JSME, 2)Preparation of S-N curve for lap welds considering the statistical properties of the results of fatigue tests. 3) Procedure for estimating the initiation life of fatigue crack of lap welds under variable loads by the rule lf classification society and probability density function, 4) Guideline for inspection of lap welds fo membrane type LNG tank.

  • PDF

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • 공업화학
    • /
    • 제33권6호
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.