• Title/Summary/Keyword: Two-way relay channels

Search Result 27, Processing Time 0.02 seconds

Analysis of Antenna Selection in Two-way Relaying MIMO Systems with CPM Modulation

  • Lei, Guowei;Chen, Hailan;Liu, Yuanan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1140-1155
    • /
    • 2021
  • Up to now, many state-of-arts have been proposed for two-way relaying system with linear modulations. The performances of antenna selection (AS) at both transmit and relay nodes need to be investigated in some two-way relaying multiple-input multiple-output (TWRM) systems. In this paper, the goal is focused on the study of nonlinear modulations, i.e., continuous phase modulation (CPM) in TWRM systems. Firstly, the joint phase trellis are simplified by reversed Rimoldi processing so as to reduce the systems' complexity. Then the performances of joint transmit and receive antenna selection (JTRAS) with CPM modulations in two-way relaying MIMO systems are analyzed. More exactly, the pair wise probability (PEP) is used to evaluate the error performance based on the CPM signal matrix, which is calculated in terms of Laurent expression. Since the channels subject to two terminal nodes share common antennas at relay node R in multiple-access scheme, we revise the JTRAS algorithm and compare it to existing algorithm via simulation. Finally, the error performances for various schemes of antenna selection are simulated and compared to the analysis in this paper.

Relay Selection Algorithm for Two-way Multiple Relay Channels (양방향 다중 중계기 채널에서의 중계기 선택 기법)

  • Kang, Yoo-Keun;Lee, Jae-Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.31-34
    • /
    • 2008
  • 양방향 중계 채널(two-way relay channel)은 2명의 사용자가 중계기(relay)의 도움을 받아 서로 정보를 주고받는 통신 채널이다. 중계기에서는 각각의 사용자로부터 독립적으로 수신한 두 데이터 패킷에 네트워크 코딩 기법을 적용하고, 이를 통해 만든 패킷을 두 사용자에게 동시에 전송한다. 따라서 양방향 중계 채널에서는 기존의 협력 통신에 비해 보다 효율적인 자원의 사용이 가능하다. 한편, 다중 중계기 환경에서의 중계기 선택 기반 전송 방식은 시스템의 전력 제한(power constraint), 전송 패킷의 동기화(synchronization) 문제 등을 고려할 때 다중 중계기 기반 전송 방식보다 우수한 성능을 얻을 수 있다. 본 논문에서는 양방향 다중 중계기 채널에서 중계기 선택 기법을 제안한다. 양방향 중계 채널에서는 수신한 두 신호의 결합을 위해 중계기에서 네트워크 코딩 기법을 적용함으로써 중계기의 부담이 보다 증가하는 특징이 있다. 또한, 중계기는 신호 전송 시 두 사용자 모두에게 전송하게 되고 이로 인해 두 수신지와의 채널 조건을 모두 고려하여야 한다. 따라서 중계기 선택은 데이터 패킷의 전송이 시작되기 전에 분산된 방식(distributed method)으로 이루어지며, 각각의 사용자와 중계기 간 일시적(instantaneous) 채널 이득을 바탕으로 사용자-사용자 간(end-to-end) 경로 조건의 최대값을 계산하는 메트릭(metric)을 중계기 선택 기준으로 사용한다. 모의실험을 통해 제안된 중계기 선택 기법이 중계기의 개수에 해당하는 다이버시티 이득을 얻을수 있음을 보여준다.

  • PDF

Symbol Error Probability of a Physical Layer Network Coded System in Nakagami Fading Channels (나카가미 페이딩 채널에서 물리 계층 네트워크 부호화 시스템의 심볼 오류율)

  • Do, Phu Thinh;Wang, Jin-Soo;Park, Jin-Bae;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.645-654
    • /
    • 2012
  • In this paper, we consider a two-way relay (TWR) system, where two user nodes exchange their information within two transmission phases, by the help of a relay node adopting physical layer network coding. In the system, two users transmit their binary phase shift keying symbols simultaneously in the first phase, and the relay node decodes the XORed version of two user data and broadcasts it back to two users in the second phase. The performance of the system is analyzed in terms of the average end-to-end symbol error probability in Nakagami-m fading channels, for which a tight upper bound is derived in a closed form to provide an accurate and handy estimate on the performance. The results show that our upper bounds are almost indistinguishable from simulation results for various channel and system configurations. In addition, the optimal relay location and power allocation for various conditions can be obtained quickly with our analysis.

Detecting a Relay Attack with a Background Noise (소리를 이용한 릴레이 공격 공격의 탐지)

  • Kim, Jonguk;Kang, Sukin;Hong, Manpyo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.617-627
    • /
    • 2013
  • Wireless communication technology such as NFC and RFID makes the data transfer between devices much easier. Instead of the irksome typing of passwords, users are able to simply authenticate themselves with their smart cards or smartphones. Relay attack, however, threatens the security of token-based, something-you-have authentication recently. It efficiently attacks the authentication system even if the system has secure channels, and moreover it is easy to deploy. Distance bounding or localization of two devices has been proposed to detect relay attacks. We describe the disadvantages and weakness of existing methods and propose a new way to detect relay attacks by recording a background noise.

Spectrum Hole Utilization in Cognitive Two-way Relaying Networks

  • Gao, Yuan;Zhu, Changping;Tang, Yibin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.890-910
    • /
    • 2014
  • This paper investigates the spectrum hole utilization of cooperative schemes for the two-way relaying model in order to improve the utilization efficiency of limited spectrum holes in cognitive radio networks with imperfect spectrum sensing. We propose two specific bidirectional secondary data transmission (BSDT) schemes with two-step and three-step two-way relaying models, i.e., two-BSDT and three-BSDT schemes, where the spectrum sensing and the secondary data transmission are jointly designed. In the proposed cooperative schemes, the best two-way relay channel between two secondary users is selected from a group of secondary users serving as cognitive relays and assists the bi-directional communication between the two secondary users without a direct link. The closed-form asymptotic expressions for outage probabilities of the two schemes are derived with a primary user protection constraint over Rayleigh fading channels. Based on the derived outage probabilities, the spectrum hole utilization is calculated to evaluate the percentage of spectrum holes used by the two secondary users for their successful information exchange without channel outage. Numerical results show that the spectrum hole utilization depends on the spectrum sensing overhead and the channel gain from a primary user to secondary users. Additionally, we compare the spectrum hole utilization of the two schemes as the varying of secondary signal to noise ratio, the number of cognitive relays, and symmetric and asymmetric channels.

Sparsity Adaptive Expectation Maximization Algorithm for Estimating Channels in MIMO Cooperation systems

  • Zhang, Aihua;Yang, Shouyi;Li, Jianjun;Li, Chunlei;Liu, Zhoufeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3498-3511
    • /
    • 2016
  • We investigate the channel state information (CSI) in multi-input multi-output (MIMO) cooperative networks that employ the amplify-and-forward transmission scheme. Least squares and expectation conditional maximization have been proposed in the system. However, neither of these two approaches takes advantage of channel sparsity, and they cause estimation performance loss. Unlike linear channel estimation methods, several compressed channel estimation methods are proposed in this study to exploit the sparsity of the MIMO cooperative channels based on the theory of compressed sensing. First, the channel estimation problem is formulated as a compressed sensing problem by using sparse decomposition theory. Second, the lower bound is derived for the estimation, and the MIMO relay channel is reconstructed via compressive sampling matching pursuit algorithms. Finally, based on this model, we propose a novel algorithm so called sparsity adaptive expectation maximization (SAEM) by using Kalman filter and expectation maximization algorithm so that it can exploit channel sparsity alternatively and also track the true support set of time-varying channel. Kalman filter is used to provide soft information of transmitted signals to the EM-based algorithm. Various numerical simulation results indicate that the proposed sparse channel estimation technique outperforms the previous estimation schemes.

A Study on the Binary-Coded Physical-Layer Network Coding with High-Order Modulation Techniques (고차원 변조방식을 적용한 이진 부호화된 물리계층 네트워크 코딩에 관한 연구)

  • Lim, Hyeonwoo;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2131-2139
    • /
    • 2014
  • In this paper, a binary-coded physical-layer network coding (PNC) is considered when high-order modulation techniques are used at source nodes in wireless communication environments. In the conventional PNC schemes, tight power control and phase compensation are required at a relay node. However, they may not be feasible in practical wireless communication environments. Thus, we do not assume the pre-equalization in this paper, and we only utilize the channel state information at receiver (CSIR). We propose a signal detection method for the binary-coded PNC with high-order modulation, such as QPSK and 16QAM, at the source nodes, while the conventional scheme only consider the BPSK at source nodes. We also analyze the bit-error performance of the proposed technique in both uncoded and coded cases.