• Title/Summary/Keyword: Two-stage polymerization

Search Result 17, Processing Time 0.026 seconds

Core-Shell Polymerization with Hydrophilic Polymer Cores

  • Park, Jong-Myung
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.51-65
    • /
    • 2001
  • Two-stage emulsion polymerizations of hydrophobic monomers on hydrophilic seed polymer particles were carried out to make core-shell composite particles. It was found that the loci of polymerization in the second stage were the surface layer of the hydrophilic seed latex particles, and that it has resulted in the formation of either eccentric core-shell particles with the core exposed to the aqueous phase or aggregated nonspherical composite particles with the shell attached on the seed surface as many small separated particles. The driving force of these phenomena is related to the gain in free energy of the system in going from the hydrophobic polymer-water interface to hydrophilic polymer-water interface. Thermodynamic analysis of the present polymerization system, which was based on spreading coefficients, supported the likely occurrence of such nonspherical particles due to the combined effects of interfacial free energies and phase separation between the two polymer phases. A hypothetical pathway was proposed to prepare hydrophilic core-hydrophobic shell composite latex particles, which is based on the concept of opposing driving and resistance forces for the phase migration. It was found that the viscosity of the monomer-swollen polymer phase played important role in the formation of particle morphology.

  • PDF

FINITE ELEMENT STRESS ANALYSIS OF CLASS V COMPOSITE RESIN RESTORATION SUBJECTED TO CAVITY FORMS AND PLACEMENT METHODS (와동 형태와 충전 방법에 따른 Class V 복합 레진 수복치의 유한요소법적 응력 분석)

  • Son, Yoon-Hee;Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.91-108
    • /
    • 2000
  • Most of cervical abrasion and erosion lesions show gingival margin where the cavosurface angle is on cementum or dentin. Composite resin restoration of cervical lesion shrink toward enamel margin due to polymerization contraction. This shrinkage has clinical problem such as microleakage and secondary caries. Several methods to diminish contraction stress of composite resin restoration, such as modifying cavity form and building up restorations in several increments have been attempted. The purpose of this study was to compare polymerization contraction stress of composite resin in Class V cavity subjected to cavity forms and placement methods. In this study, finite element model of 5 types of Class V cavity was developed on computer tomogram of maxillary central incisor. The types are : 1) Box cavity 2) Box cavity with incisal bevel 3) V shape cavity 4) V shape cavity with incisal bevel 5) Saucer shape cavity. The placement methods are 1) Incisal first oblique incremental curing 2) Bulk curing. An FEM based program for light activated polymerization is not available. For simulation of curing dynamics, time dependent transient thermal conduction analysis was conducted on each cavity and each placement method. For simulation of polymerization shrinkage, thermal stress analysis was performed with each cavity and each placement method. The time-temperature dependent volume shrinkage rate, elastic modulus, and Poisson's ratio were determined in thermal conduction data. The results were as follows : 1. With all five Class V cavifies, the highest Von Mises stress at the composite-tooth interface occurred at gingival margin. 2. With box cavity, V shape cavity and saucer cavity, Von Mises stress at gingival margin of V shape cavity was lower than the others. And that of box cavity was lower than that of saucer cavity. 3. Preparing bevel at incisal cavosurface margin decreased the rate of stress development in early polymerization stage. 4. Preparing bevel at incisal cavosurface margin of V shape cavity increased the Von Mises stress at gingival margin, but decreased at incisal margin. 5. At incisal margin, stress development by bulk curing method was rapid at early stage. Stress development by first increment of incremental curing method was also rapid but lower than that by bulk curing method, however after second increment curing final stress was the same for two placement methods. 6. At gingival margin, stress development by incremental curing method was suddenly rapid at early stage of second increment curing, but final stress was the same for two placement methods.

  • PDF

Density Compatibility of Encapsulation of White Inorganic $TiO_2$ Particles Using Dispersion Polymerization Technique for Electrophoretic Display

  • Kim, Mi-Kyung;Joung, Meyoung-Ju;Kim, Chul-Am;Lee, Yong-Eui;Ahn, Seong-Deok;Kang, Seung-Roul;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.825-827
    • /
    • 2002
  • The polymer encapsulation of white inorganic $TiO_2$ pigment particles was prepared by a two stage dispersion polymerization technique for applications in electrophoretic displays (EPDs). In order to give functionality for inorganic pigment particles in the EPD, we have investigated the density of the polymer encapsulated $TiO_2$ particles. The average density of the polymer encapsulated $TiO_2$ particles was 2.2 at 25$^{\circ}C$. The average density of the polymer encapsulated $TiO_2$ particles is suitable to 1.7, due to density matching with suspending media. Therefore, we will attempt density compatibility of dispersion polymerization technique for encapsulation of $TiO_2$ particles in suspending media.

  • PDF

Fundamental Process Development of a Ultramicro-Stereolithography using a Femto-second Laser for Manufacturing Nano-scaled Features (펨토초 레이저를 이용한 극미세 광조형 기반공정 개발)

  • 박상후;임태우;정창균;이신욱;이성구;공홍진;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.180-187
    • /
    • 2004
  • The miniaturization technologies are perceived as potential key technologies of the future. They will bring about completely different ways in which people and machines interact with the physical world. However, at the present time, the primary technologies used fur miniaturization are dependent on the microelectronic fabrication techniques. The principal shortcomings associated with such techniques are related to the inability of to produce arbitrary three-dimensional features not only in electronics but also in a wide range of metallic materials. In this paper, a ultramicro-stereolithography system assisted with a femto-second laser was developed to fabricate the arbitrary three-dimensional nano/micro-scaled features. In the developed process, a femto-second laser is projected according to CAD data on a photosensitive monomer resin, it induces polymerization of the liquid resin. After the polymerization, a droplet of ethanol is dropped to remove the liquid resin and then the polymerized nano-scaled features only remain. By a newly developed process, miniature devices for an extremely wide range of applications would become a technologically feasible reality. Some of nano/micro-scaled features as examples were fabricated to prove the usefulness of this study at the fundamental stage.

Surface Hydrophilization of PVDF Membrane by Thermal Polymerization Lamination Process (열중합 Lamination 공정에 의한 PVDF 분리막의 표면 친수화)

  • Lee, Se-Min;Byun, Young-Jin;Kim, Jin-Ho;Kim, Sung Soo
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • Hydrophilic monomers were polymerized for lamination on polyvinylidene fluoride (PVDF) membrane surface for hydrophilization of the membranes. Hydrophilization reduced the contact angle from $95^{\circ}$ to $55^{\circ}$ and enhanced the water flux by 10 times while it reduced the bovine serum albumin (BSA) adsorption amount to 1/4 level. Thermal polymerization process was optimized by examining several operation parameters. Dimethyl oxobuthyl acrylamide (DOAA) showed the best effect due to its better hydrophilicity than others. Increase of amount of monomer enhanced the performance until the optimum concentration of 30 wt%, beyond which excess amount of monomer resulted in homopolymerization to deteriorate the performance. Azobis (isobutyronitrile)(AIBN) initiator has greater activation temperature range than benzoyl peroxide (BPO) and it showed better hydrophilation performance. Two stage lamination process, application of initiator followed by monomer addition, was more effective than one stage process, addition of initiator and monomer at once, which still reduced the contact angle but also reduced the water flux by pore blocking phenomena.

Fabrication of Three-Dimensional Micro Optical and Fluidic System Using Dual Stage Nanostereolithography Process (이중 스테이지를 이용한 대면적 3차원 광/유체 마이크로 디바이스 제작에 관한 연구)

  • Lim, Tae Woo;Yang, Dong-Yol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.552-557
    • /
    • 2015
  • The nanostereolithography process using a femtosecond laser has been shown to have strong merits for the direct fabrication of 2D/3D micro structures. In addition, a femtosecond laser provides efficient tools for precise micromachining owing to the advantages of a small and feeble heat effect zone. In this paper, we report an effective fabrication process of 3D micro optical and fluidic devices using nanostereolithography process composed of a dual stage system. Process conditions for additive and subtractive fabrication are examined. The Piezo stage scanning system is used for 3D micro-fabrication in unit area of sub-mm scale, and the motor stage is employed in fabrication on the scale of several mm. The misalignment between the pizeo- and motor- stages is revised through rotational transformation of CAD data in the unit domain. Here, the effectiveness of the proposed process is demonstrated through examples using 3D optical and microfluidic structures.

h Study on the Preparation of PMMA/PSt Composite Particles by Sequential Emulsion Polymerization (단계중합법에 의한 PMMA/PSt Composite Particle의 제조에 관한 연구)

  • 이선룡;설수덕
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.617-624
    • /
    • 2001
  • The core-shell composite latexes were synthesized by stage emulsion polymerization of methyl methacrylate (MMA) and styrene (St) with ammonium persulfate after preparing monomer pre-emulsion in the presence of anionic surfactant. However, in preparation of core-shell composite latex, several unexpected results are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, We study the effect of initiator concentrations, surfactant concentrations, and reaction temperature on the core-shell structure of polymethyl methacrylate/polystyrene and polystyrene/polymethyl methacrylate. Particle size and particle size distribution were measured using particle size analyzer, and the morphology of the core-shell composite latex was determined using transmission electron microscope. Glass temperature was also measured using differential scanning calorimeter. To identify the core-shell structure, pH of the two composite latex solutions were measured.

  • PDF

Effect of two-phase fabrication method for the optimum fit of light-polymerized record bases

  • Huh, Jung-Bo;Kang, Min-Goo;Shin, Sang-Wan;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.3
    • /
    • pp.102-105
    • /
    • 2010
  • PURPOSE. The aims of this study were to suggest a method of fabrication of the record base using a light-polymerized resin by applying the two-phase fabrication method for the improvement of the fit of the record base and to compare the degree of fit according to the separation site. MATERIALS AND METHODS. In the edentulous cast of maxilla, four test groups were considered. In the first, second, third, and fourth test groups (n = 12 in each group) the separation was done at 0, 5, 10, and 15 mm, respectively below the alveolar crest along the palatal plane. For the control group, the record base was made without separating the two sections. The light-body silicone material was injected into the fitting surface of the record base. It was then placed onto the cast and finger pressure was applied to stabilize it in a seated position followed by immediate placement onto the universal test device. Finally, the mass of the impression material was measured after it was removed. ANOVA was performed using the SAS program. For the post-hoc test, the Wilcoxon Rank-Sum test and the Tukey-Kramer HSD test were performed ($\alpha$ = 0.05). RESULTS. The control group and Group 3, 4 showed significant differences. The Group 3 and 4 showed significantly smaller inside gaps than the control group which was not made with the two-phase fabrication method. CONCLUSION. The two-stage polymerized technique can improve the fit of the denture base particularly when the separation was made at 10 to 15 mm from the alveolar crest.

Cultivation of Alcaligenes eutrophus Transforming Cloned phbC Gene from Alcaligenes latus for Production of P(3-hydroxybutyrate-4-hydroxybutyrate) Containing High Molar Fraction of 4-Hydroxybutyrate (phbC 유전자가 도입된 형질전환 Alcaligenes eutrophus를 이용한 고분율 4-hydroxybutyrate 함유 P(3-hydroxybutyrate-4-hydroxybutyrate)의 생산)

  • Gang, Myeong-Sin;Jeong, Yeong-Mi;Lee, Yong-Hyeon
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.422-428
    • /
    • 1999
  • A transformat Alcaligence eutrophus GA5 harboring phbC gene from A. latus was cultivated for production of Poly(3-hydroxybutyrate-4-hydroxybutyrate)[P(3HB-4HB)] containing high molar fraction of 4-hydroxybutyrate(4HB)] containing high molar fraction of 4-hydroxybutyrate(4HB). Transformation did not influenced significantly on total cell growth, on total cell growth, concentration, and content of P(3HB-4HB), however, significantly influenced on 4HB molar fraction in P(3HB-4HB) increasing from 12.3 to 23.5 mol% after 48 h cultivation in two-stage using 1.0%(W/V) of ${\gamma}$-butyrolactone as a precursor compare to parent strain. Above increment may be due to the accelerated polymerization between 3HB and 4HB converted from precusor compound by amplified phbC gene. Citrate increased remarkbly total cell mass and P(3HB-4HB) concentration, but did not influenced on the molar fraction of 4HB, meanwhile, magnesium ion influenced on P(3HB-4HB) concentration and 4HB molar fraction significantly. The two-stage cultivation method was modified, in such a way minimizing P(3HB) accumulated inside of cell grown at first-stage, consquently, 26.3% of P(3HB-4HB) containing 61.0 mol% of 4HB fraction was obtained after 72hr. Furthermore, semi-homopolymeric P(4HB) containing 92.0 mol% of 4Hb was obtained, and its structure was confirmed by $^1$H-NMR.

  • PDF

Cloning, Expression, and Polymerization Assay of FtsZ Protein from Staphylococcus aureus (Staphylococcus aureus FtsZ의 클로닝, 발현 및 폴리머 형성 활성 분석)

  • Son, Sang Hyeon;Lee, Dong Yun;Kim, Ye Jun;Ko, Sooho;Cho, Seong Jun;Jung, Hyo Cheol;Lee, Hyung Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.274-277
    • /
    • 2012
  • Cytokinesis is the final stage of cell division, dividing one mother cell into two daughter cells. For the cutting of a plasma membrane during bacterial cytokinesis, a tubulin homolog FtsZ protein is recruited from the cytoplasm to the division site. FtsZ protein polymerizes in a GTP-dependent manner and its N-terminal domain has a GTPase activity. In this study, we have begun to characterize FtsZ from Staphylococcus aureus (SA). Full-length SA FtsZ was cloned into pRSFDuet-1 vector and the clone was transformed into a BL21 (DE3) star cell. The recombinant SA FtsZ protein was purified using Ni-NTA affinity chromatography and dialysis. Using a spectrofluorometer, we showed that SA FtsZ undergoes a GTP-dependant polymerization in vitro. The polymer of the SA FtsZ protein disappeared after a few minutes, suggesting that the polymer is degraded as the GTP is consumed. This assay system may well be applied for inhibitor screening targeting S. aureus FtsZ.