• Title/Summary/Keyword: Two-stage network

Search Result 333, Processing Time 0.027 seconds

An Energy Efficient Algorithm Based on Clustering Formulation and Scheduling for Proportional Fairness in Wireless Sensor Networks

  • Cheng, Yongbo;You, Xing;Fu, Pengcheng;Wang, Zemei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.559-573
    • /
    • 2016
  • In this paper, we investigate the problem of achieving proportional fairness in hierarchical wireless sensor networks. Combining clustering formulation and scheduling, we maximize total bandwidth utility for proportional fairness while controlling the power consumption to a minimum value. This problem is decomposed into two sub-problems and solved in two stages, which are Clustering Formulation Stage and Scheduling Stage, respectively. The above algorithm, called CSPF_PC, runs in a network formulation sequence. In the Clustering Formulation Stage, we let the sensor nodes join to the cluster head nodes by adjusting transmit power in a greedy strategy; in the Scheduling Stage, the proportional fairness is achieved by scheduling the time-slot resource. Simulation results verify the superior performance of our algorithm over the compared algorithms on fairness index.

An automatic mask alignment system using moire sensors

  • Furuhashi, Hideo;Uchida, Yoshiyuki;Ohashi, Asao;Watanabe, Shigeo;Yamada, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.545-549
    • /
    • 1993
  • an alignment system in the X-and Y-directions an X-Y-.theta. stage driven by piezoelectric actuators is presented. A pair of quadruple gratings and a quadruple photo-detector are used. The difference between the two 0-th order moire signals in reflection with a relative spatial phase of 180.deg. is used in each direction to control the alignment of the X-Y-.theta. stage. The stage is aligned at the position where the difference is zero. The quadruple gratings are 10 mm * 10 mm, and of a binary square-type with a 1/2 duty cycle. Their pitches are 16 .mu.m. Alignment accuracy of .+-.20nm was obtained in this system.

  • PDF

Railway sleeper crack recognition based on edge detection and CNN

  • Wang, Gang;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.779-789
    • /
    • 2021
  • Cracks in railway sleeper are an inevitable condition and has a significant influence on the safety of railway system. Although the technology of railway sleeper condition monitoring using machine learning (ML) models has been widely applied, the crack recognition accuracy is still in need of improvement. In this paper, a two-stage method using edge detection and convolutional neural network (CNN) is proposed to reduce the burden of computing for detecting cracks in railway sleepers with high accuracy. In the first stage, the edge detection is carried out by using the 3×3 neighborhood range algorithm to find out the possible crack areas, and a series of mathematical morphology operations are further used to eliminate the influence of noise targets to the edge detection results. In the second stage, a CNN model is employed to classify the results of edge detection. Through the analysis of abundant images of sleepers with cracks, it is proved that the cracks detected by the neighborhood range algorithm are superior to those detected by Sobel and Canny algorithms, which can be classified by proposed CNN model with high accuracy.

Predicting Exchange Rates with Modified Elman Network (수정된 엘만신경망을 이용한 외환 예측)

  • Beum-Jo Park
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.1
    • /
    • pp.47-68
    • /
    • 1997
  • This paper discusses a method of modified Elman network(1990) for nonlinear predictions and its a, pp.ication to forecasting daily exchange rate returns. The method consists of two stages that take advantages of both time domain filter and modified feedback networks. The first stage straightforwardly employs the filtering technique to remove extreme noise. In the second stage neural networks are designed to take the feedback from both hidden-layer units and the deviation of outputs from target values during learning. This combined feedback can be exploited to transfer unconsidered information on errors into the network system and, consequently, would improve predictions. The method a, pp.ars to dominate linear ARMA models and standard dynamic neural networks in one-step-ahead forecasting exchange rate returns.

  • PDF

Concept Analysis of Social Support of Nursing Students Using a Hybrid Model (혼종 모형을 이용한 간호대학생의 사회적 지지에 대한 개념 분석)

  • Choi, Miae;Park, Sunghee
    • Child Health Nursing Research
    • /
    • v.26 no.2
    • /
    • pp.222-237
    • /
    • 2020
  • Purpose: The purpose of this study was to analyze the concept of social support of nursing students using a hybrid model and to derive a definition and attributes of social support through theoretical, fieldwork, and final analysis stages. Methods: Twenty-nine studies were analyzed in the theoretical stage. Seventeen in-depth interviews were conducted with nursing students in the fieldwork stage. In the final analysis stage, the concept of social support was defined and the attributes were derived by integrating the theoretical and fieldwork stages. Results: The attributes of social support of nursing students identified in the final analysis consisted of two dimensions and eight attributes. The two dimensions were structural and functional support. The eight attributes were social network, educational, emotional, informational, economic, positive evaluation, self-esteem support, and support by providing a role model provision. The structural dimension included the social network support attribute. The functional dimension included the remaining seven attributes. Educational support and support by providing of a role model provision were newly derived attributes that reflected specific characteristics of nursing students. Conclusion: Based on the results of this study, we suggest that researchers should attempt to develop a scale to measure the social support of nursing students.

Minimization of differential column shortening and sequential analysis of RC 3D-frames using ANN

  • Njomo, Wilfried W.;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.989-1003
    • /
    • 2014
  • In the preliminary design stage of an RC 3D-frame, repeated sequential analyses to determine optimal members' sizes and the investigation of the parameters required to minimize the differential column shortening are computational effort consuming, especially when considering various types of loads such as dead load, temperature action, time dependent effects, construction and live loads. Because the desired accuracy at this stage does not justify such luxury, two backpropagation feedforward artificial neural networks have been proposed in order to approximate this information. Instead of using a commercial software package, many references providing advanced principles have been considered to code a program and generate these neural networks. The first one predicts the typical amount of time between two phases, needed to achieve the minimum maximorum differential column shortening. The other network aims to prognosticate sequential analysis results from those of the simultaneous analysis. After the training stages, testing procedures have been carried out in order to ensure the generalization ability of these respective systems. Numerical cases are studied in order to find out how good these ANN match with the sequential finite element analysis. Comparison reveals an acceptable fit, enabling these systems to be safely used in the preliminary design stage.

Prioritized Multipath Video Forwarding in WSN

  • Asad Zaidi, Syed Muhammad;Jung, Jieun;Song, Byunghun
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.176-192
    • /
    • 2014
  • The realization of Wireless Multimedia Sensor Networks (WMSNs) has been fostered by the availability of low cost and low power CMOS devices. However, the transmission of bulk video data requires adequate bandwidth, which cannot be promised by single path communication on an intrinsically low resourced sensor network. Moreover, the distortion or artifacts in the video data and the adherence to delay threshold adds to the challenge. In this paper, we propose a two stage Quality of Service (QoS) guaranteeing scheme called Prioritized Multipath WMSN (PMW) for transmitting H.264 encoded video. Multipath selection based on QoS metrics is done in the first stage, while the second stage further prioritizes the paths for sending H.264 encoded video frames on the best available path. PMW uses two composite metrics that are comprised of hop-count, path energy, BER, and end-to-end delay. A color-coded assisted network maintenance and failure recovery scheme has also been proposed using (a) smart greedy mode, (b) walking back mode, and (c) path switchover. Moreover, feedback controlled adaptive video encoding can smartly tune the encoding parameters based on the perceived video quality. Computer simulation using OPNET validates that the proposed scheme significantly outperforms the conventional approaches on human eye perception and delay.

The Framework for the Strategy of Research & Business Development (기술이전 및 사업화 활성화를 위한 전략 도출 프레임워크 - R&BD 효율성 평가를 기반으로 -)

  • Kim, Joon-Young;Sung, Si-Il;Park, Jaehun
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.4
    • /
    • pp.785-798
    • /
    • 2016
  • Purpose: This paper developed the framework for extracting strategies of research and business development (R&BD) based on the data envelopment analysis(DEA). Methods: DEA has been widely utilized in evaluating R&D efficiency. Even though, technology transfer and commercialization has been regarded as the important factors for practical R&D efficiency evaluation, most research have evaluated R&D efficiency by just using the DEA outputs such as the number of patents and papers. The technology transfer, commercialization and relations among costs and generated technology and commercialization are needed to be considered for more practical R&D efficiency evaluation. Thus, this research addressed a method on how to incorporate the commercialization factors into the R&DB efficiency evaluation, and improve the efficiency strategically in terms of R&D and B&D. To achieve this, this research utilized a two-stage network DEA model for R&BD efficiency evaluation. Results: The proposed framework was applied to the 15 public research institutes and the 34 universities for validation. R&BD efficiency for the 15 public research institutes and the 34 universities was evaluated, and the differentiated improvement strategies for the inefficient DMUs to improve their efficient were proposed. Conclusion: The R&BD efficiency would be effectively analyzed based on two-stage network DEA. It would be utilized for the effective strategy planning for cultivating R&BD.

An Analysis on Channel Sensing Overhead in IEEE 802.22 Cognitive Radio Networks (IEEE 802.22 인지 라디오 네트워크에서 채널 센싱 오버헤드 분석)

  • Park, Keun-Mo;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.249-253
    • /
    • 2010
  • Resource of wireless frequency bandwidth is gradually going to be deficient due to explosive increase of traffic and saturated non-licensed frequency band such as ISM. In the contrary, many licensed frequency bands are revealed to be low in utilization by several measurement based researches. To alleviate this inefficiency, a concept of cognitive radio is suggested. Cognitive radio lets non-licensed user exploit the licensed frequency band as long as non-licensed user does not interfere licensed user and as a result, it is possible to harness wireless frequency more efficiently. IEEE 802.22 is the first standard network with cognitive radio technology and it employs Two-Stage channel sensing mechanism to accomplish both enough licensed user protection and efficient channel utilization. In this paper, we analyze the overhead of Two-Stage channel sensing mechanism and identify the influence of channel sensing time to the overhead.

Combinatorial Auction-Based Two-Stage Matching Mechanism for Mobile Data Offloading

  • Wang, Gang;Yang, Zhao;Yuan, Cangzhou;Liu, Peizhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2811-2830
    • /
    • 2017
  • In this paper, we study the problem of mobile data offloading for a network that contains multiple mobile network operators (MNOs), multiple WiFi or femtocell access points (APs) and multiple mobile users (MUs). MNOs offload their subscribed MUs' data traffic by leasing the unused Internet connection bandwidth of third party APs. We propose a combinatorial auction-based two-stage matching mechanism comprised of MU-AP matching and AP-MNO matching. The MU-AP matching is designed to match the MUs to APs in order to maximize the total offloading data traffic and achieve better MU satisfaction. Conversely, for AP-MNO matching, MNOs compete for APs' service using the Nash bargaining solution (NBS) and the Vickrey auction theories and, in turn, APs will receive monetary compensation. We demonstrated that the proposed mechanism converges to a distributed stable matching result. Numerical results demonstrate that the proposed algorithm well capture the tradeoff among the total data traffic, social welfare and the QoS of MUs compared to other schemes. Moreover, the proposed mechanism can considerably offload the total data traffic and improve the network social welfare with less computation complexity and communication overhead.