• Title/Summary/Keyword: Two-position controls

Search Result 83, Processing Time 0.031 seconds

Energy Saving Heating Control System Using the Power Line Communication Modem for a Valve Controller (밸브제어기용 전력선 통신 모뎀을 이용한 에너지 절약형 난방제어 시스템)

  • Kim, Myung-Ho;Lee, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.123-127
    • /
    • 2006
  • In a heating control system, the indoor temperature controller transfers temperature signals inputted from the temperature sensor and the user to the valve controller. The valve controller receives these signals then the valve controller controls the valve driving motor on two position control and controls the indoor temperature. When setting up a new valve driving motor from a long distance it is necessary to set up a new valve controller. But occasionary, due to construction, It is impossible to wire between the existing valve controller and the new valve controller. In this situation, the new and existing valve controllers can communicate via power line communication. In this paper it is proposed heating control system controls on two position control via power line communication.

Power Line Communication Heating Control System by LonWorks (LonWorks를 이용한 전력선 통신 난방제어 시스템)

  • Kim, Myung-Ho;Kim, Sun-Boo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1150-1155
    • /
    • 2006
  • In a heating control system, the indoor temperature controller transfers temperature signals inputed from the temperature sensor and the user to the valve controller. The valve controller recieves these signals then the valve controller controls the valve driving motor on two position control and controls the indoor temperature. When setting up a new valve driving motor from a long distance it is necessary to set up a new valve controller. But occasionary, due to construction, it is impossible to wire between the existing valve controller and the new valve controller. In this situation, the new and existing valve controllers can communicate via power line communication. In this paper it is proposed heating control system controls on two position control via power line communication.

  • PDF

Development and Performance Evaluation of Optimal Control logics for the Two-Position- and Variable-Heating Systems in Double Skin Facade Buildings (이중외피 건물 난방시스템의 발정제어 및 가변제어를 위한 최적로직의 개발 및 성능평가)

  • Baik, Yong Kyu;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.71-77
    • /
    • 2014
  • This study aimed at developing and evaluating performance of the two logics for respectively operating two-position- and variable-heating systems. Both logics control the heating system and openings of the double skin facade buildings in an integrated manner. Artificial neural network models were applied for the predictive and adaptive controls in order to optimally condition the indoor thermal environment. Numerical computer simulation methods using the MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation) were employed for the performance tests of the logics in the test module. Analysis on the test results revealed that the variable control logic provided more comfortable and stable temperature conditions with the increased comfortable period and the decreased standard deviation from the center of the comfortable range. In addition, the amount of heat supply to the indoor space was significantly reduced by the variable control logic. Thus, it can be concluded that the optimal control method using the artificial neural network model can work more effectively when it is applied to the variable heating systems.

An algorithm for real-time control of a 3D avatar by symmetry-formed motions (대칭형 자유동작에 의한 3D 아바타 실시간 제어 알고리즘)

  • Chang, Hee-Dong
    • Journal of Korea Game Society
    • /
    • v.3 no.2
    • /
    • pp.24-29
    • /
    • 2003
  • The market of digital avatar with internet and digital technology is increasing rapidly. The users want to express any free-formed motion of their avatars in the cyber space. The user s motion capturing method as the avatar's motion can express any free-formed motion of the avatar in real-time but the methods are expensive and inconvenient. In this paper, we proposed a new method of expressing any free-formed motion of the avatar in real-time. The proposed method is an algorithm for real-time control of a 3D avatar in symmetry-formed free motion. Specially, the algorithm aims at the motion control of a 3D avatar for online dancing games. The proposed algorithm uses the skeleton character model and controls any one of two hands of the character model by a joystick with two sticks. In the symmetry-formed motion, the position and orientation of one hand can determine the position and orientation of the other hand. And the position and orientation of a hand as an end-effector can determine the pose of the arm by Inverse Kinematics. So the algorithm can control the symmetry-formed free motions of two arms by one joystick with two sticks. In the dance game, the algorithm controls the arm motion by the joystick and the other motion by the motion captured DB.

  • PDF

A Two-step Kalman/Complementary Filter for Estimation of Vertical Position Using an IMU-Barometer System (IMU-바로미터 기반의 수직변위 추정용 이단계 칼만/상보 필터)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Estimation of vertical position is critical in applications of sports science and fall detection and also controls of unmanned aerial vehicles and motor boats. Due to low accuracy of GPS(global positioning system) in the vertical direction, the integration of IMU(inertial measurement unit) with the GPS is not suitable for the vertical position estimation. This paper investigates an IMU-barometer integration for estimation of vertical position (as well as vertical velocity). In particular, a new two-step Kalman/complementary filter is proposed for accurate and efficient estimation using 6-axis IMU and barometer signals. The two-step filter is composed of (i) a Kalman filter that estimates vertical acceleration via tilt orientation of the sensor using the IMU signals and (ii) a complementary filter that estimates vertical position using the barometer signal and the vertical acceleration from the first step. The estimation performance was evaluated against a reference optical motion capture system. In the experimental results, the averaged estimation error of the proposed method was 19.7 cm while that of the raw barometer signal was 43.4 cm.

A study on the position control of excavator attachment using fuzzy control (퍼지제어를 이용한 굴삭기 작업장치 위치제어에 관한 연구)

  • 이시천;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1183-1187
    • /
    • 1993
  • The objective of this study is to design a fuzzy logic controller(FLC) which controls the position of excavator's attachment a noble FLC is proposed, which is based on simple control rules while offering easy tuning of control parameters by utilizing real operation characteristics of an operator. The proposed FLC consists of two parts, the proportional controller part and the FLC part. Experiments are carried out on a test bed which is built around a commercial excavator. The controller is applied to bhe leveling of excavator's bucket tip, which is one of the main functions in an excavator's operation.

  • PDF

생산공장용 무궤도 무인운반차 개발

  • 한석균;김용일;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.286-290
    • /
    • 2001
  • This paper presents a full-digital low-level controller for a robotic material transfer system which has been developed for a computer-integrated manufacturing model plant. Compared to conventional analog or hybrid type controllers in current industrial environments, this controller system has some advantages such as strong noise-immunity, easy control algorithm implementation, etc The servo-controller consists of two modules, a position controller and a DC servo motor driver. The position controller operates position feedback routines by receiving position encoder data and sending control outputs to the driver. The position controller is implemented in a full-digital way using a recently introduced microcontroller. The DC servomotor driver controls speeds and torques. The driver consists of a micro-controller and insulated-gate-bipolar-transistors (IGBT). The micro-controller provides control signals, and the IGBT's amplifies the control signals and sends them to the motor.

A Dual PID Controller for High-Accuracy Positioning of Ink Jet Printer Media Advance System (잉크젯 프린터 용지 이송 장치의 정밀 위치 제어를 위한 이중 PID 제어기의 설계)

  • 조영완
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.317-324
    • /
    • 2004
  • The ink jet printer media advance system is required to be exactly driven to the target position via tracking the reference velocity profile to obtain the high quality print image. A single gain PID controller is not sufficient to fulfill the control objectives, the exact velocity tracking and the accurate positioning, at the same time. A dual PID controller and its switching strategy are presented in this paper to achieve the control objectives. The media advance system is controlled by two separate PID controllers, one of which is for velocity control, and the other is for position control. A PID controller controls the velocity of the media advance system until it reaches the predetermined switching position. When the media advance system passes the predetermined position, the controller is switched to the other PID controller which is more profitable for exact positioning. The switching position is determined by the estimated stop distance. The simulation and experimental results are presented to show the validity and effectiveness of the proposed controller.

Development of a Robust Nonlinear Prediction-Type Controller

  • Park, Ghee-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.445-450
    • /
    • 1998
  • In this paper, a robust nonlinear prediction-type controller (RNPC) is developed for the continuous time nonlinear system whose control objective is composed of system output and its desired value. The basic control law of RNPC is derived such that the future response of the system is first predicted by appropriate functional expansions and the control law minimizing the difference between the predicted and desired responses is then calculated. RNPC which involves two controls, i.e., the auxiliary and robust controls into the basic control, shows the stable closed loop dynamics of nonlinear system of any relative degree and provides the robustness to the nonlinear system with parameter/modeling uncertainty. Simulation tests for the position control of a two-link rigid body manipulator confirm the performance improvement and the robustness of RNPC.

  • PDF

The Speed and Position Sensorless Control of Switched Reluctance Motor using Binary Observer

  • Yang, Lee-Woo;Kim, Young-Cho;Choi, Jung-Soo;Kim, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.736-741
    • /
    • 1998
  • It is well known that an encoder or a resolver is necessary to obtain the position data for speed or position control Generally utilized speed sensors are mal-affected by the EMI, dusty, and high temperature surroundings. Therefore, the speed and position sensorless controls using observers have been studied widely. In this paper, the binary observer which is composed of two feedback regulation loops to control the speed of SRM(Switched Reluctance Motor) is applied. One loop compensates the control input directly like the sliding mode control, and the other one compensates the system parameters indirectly. This observer is constructed on the foundation of variable structure control on the foundation of variable structure control theory and has the inertial term for the varying parameter. The validities of this proposed method is proved by experiments.

  • PDF